Copied to
clipboard

G = C9:D24order 432 = 24·33

The semidirect product of C9 and D24 acting via D24/D12=C2

metabelian, supersoluble, monomial

Aliases: C9:2D24, D12:1D9, C36.10D6, C12.30D18, C18.12D12, C9:C8:1S3, (C3xC9):3D8, C12.2S32, C4.1(S3xD9), C3:1(D4:D9), (C9xD12):2C2, (C3xC18).6D4, C36:S3:5C2, (C3xD12).2S3, (C3xC12).74D6, C6.1(C9:D4), (C3xC36).9C22, C2.4(C9:D12), C3.2(C3:D24), C32.3(D4:S3), C6.14(C3:D12), (C3xC9:C8):1C2, (C3xC6).42(C3:D4), SmallGroup(432,69)

Series: Derived Chief Lower central Upper central

C1C3xC36 — C9:D24
C1C3C32C3xC9C3xC18C3xC36C9xD12 — C9:D24
C3xC9C3xC18C3xC36 — C9:D24
C1C2C4

Generators and relations for C9:D24
 G = < a,b,c | a9=b24=c2=1, bab-1=cac=a-1, cbc=b-1 >

Subgroups: 724 in 82 conjugacy classes, 25 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C8, D4, C9, C9, C32, C12, C12, D6, C2xC6, D8, D9, C18, C18, C3xS3, C3:S3, C3xC6, C3:C8, C24, D12, D12, C3xD4, C3xC9, C36, C36, D18, C2xC18, C3xC12, S3xC6, C2xC3:S3, D24, D4:S3, S3xC9, C9:S3, C3xC18, C9:C8, D36, D4xC9, C3xC3:C8, C3xD12, C12:S3, C3xC36, S3xC18, C2xC9:S3, D4:D9, C3:D24, C3xC9:C8, C9xD12, C36:S3, C9:D24
Quotients: C1, C2, C22, S3, D4, D6, D8, D9, D12, C3:D4, D18, S32, D24, D4:S3, C9:D4, C3:D12, S3xD9, D4:D9, C3:D24, C9:D12, C9:D24

Smallest permutation representation of C9:D24
On 72 points
Generators in S72
(1 58 34 17 50 26 9 66 42)(2 43 67 10 27 51 18 35 59)(3 60 36 19 52 28 11 68 44)(4 45 69 12 29 53 20 37 61)(5 62 38 21 54 30 13 70 46)(6 47 71 14 31 55 22 39 63)(7 64 40 23 56 32 15 72 48)(8 25 49 16 33 57 24 41 65)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 24)(17 23)(18 22)(19 21)(25 65)(26 64)(27 63)(28 62)(29 61)(30 60)(31 59)(32 58)(33 57)(34 56)(35 55)(36 54)(37 53)(38 52)(39 51)(40 50)(41 49)(42 72)(43 71)(44 70)(45 69)(46 68)(47 67)(48 66)

G:=sub<Sym(72)| (1,58,34,17,50,26,9,66,42)(2,43,67,10,27,51,18,35,59)(3,60,36,19,52,28,11,68,44)(4,45,69,12,29,53,20,37,61)(5,62,38,21,54,30,13,70,46)(6,47,71,14,31,55,22,39,63)(7,64,40,23,56,32,15,72,48)(8,25,49,16,33,57,24,41,65), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,24)(17,23)(18,22)(19,21)(25,65)(26,64)(27,63)(28,62)(29,61)(30,60)(31,59)(32,58)(33,57)(34,56)(35,55)(36,54)(37,53)(38,52)(39,51)(40,50)(41,49)(42,72)(43,71)(44,70)(45,69)(46,68)(47,67)(48,66)>;

G:=Group( (1,58,34,17,50,26,9,66,42)(2,43,67,10,27,51,18,35,59)(3,60,36,19,52,28,11,68,44)(4,45,69,12,29,53,20,37,61)(5,62,38,21,54,30,13,70,46)(6,47,71,14,31,55,22,39,63)(7,64,40,23,56,32,15,72,48)(8,25,49,16,33,57,24,41,65), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,24)(17,23)(18,22)(19,21)(25,65)(26,64)(27,63)(28,62)(29,61)(30,60)(31,59)(32,58)(33,57)(34,56)(35,55)(36,54)(37,53)(38,52)(39,51)(40,50)(41,49)(42,72)(43,71)(44,70)(45,69)(46,68)(47,67)(48,66) );

G=PermutationGroup([[(1,58,34,17,50,26,9,66,42),(2,43,67,10,27,51,18,35,59),(3,60,36,19,52,28,11,68,44),(4,45,69,12,29,53,20,37,61),(5,62,38,21,54,30,13,70,46),(6,47,71,14,31,55,22,39,63),(7,64,40,23,56,32,15,72,48),(8,25,49,16,33,57,24,41,65)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,24),(17,23),(18,22),(19,21),(25,65),(26,64),(27,63),(28,62),(29,61),(30,60),(31,59),(32,58),(33,57),(34,56),(35,55),(36,54),(37,53),(38,52),(39,51),(40,50),(41,49),(42,72),(43,71),(44,70),(45,69),(46,68),(47,67),(48,66)]])

51 conjugacy classes

class 1 2A2B2C3A3B3C 4 6A6B6C6D6E8A8B9A9B9C9D9E9F12A12B12C12D12E18A18B18C18D18E18F18G···18L24A24B24C24D36A···36I
order122233346666688999999121212121218181818181818···182424242436···36
size11121082242224121218182224442244422244412···12181818184···4

51 irreducible representations

dim111122222222222244444444
type++++++++++++++++++++++
imageC1C2C2C2S3S3D4D6D6D8D9D12C3:D4D18D24C9:D4S32D4:S3C3:D12S3xD9D4:D9C3:D24C9:D12C9:D24
kernelC9:D24C3xC9:C8C9xD12C36:S3C9:C8C3xD12C3xC18C36C3xC12C3xC9D12C18C3xC6C12C9C6C12C32C6C4C3C3C2C1
# reps111111111232234611133236

Matrix representation of C9:D24 in GL4(F73) generated by

1000
0100
00283
007031
,
51800
552300
00046
00460
,
7700
146600
00597
006614
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,0,0,28,70,0,0,3,31],[5,55,0,0,18,23,0,0,0,0,0,46,0,0,46,0],[7,14,0,0,7,66,0,0,0,0,59,66,0,0,7,14] >;

C9:D24 in GAP, Magma, Sage, TeX

C_9\rtimes D_{24}
% in TeX

G:=Group("C9:D24");
// GroupNames label

G:=SmallGroup(432,69);
// by ID

G=gap.SmallGroup(432,69);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,85,92,254,58,3091,662,4037,7069]);
// Polycyclic

G:=Group<a,b,c|a^9=b^24=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<