Copied to
clipboard

G = D36⋊S3order 432 = 24·33

2nd semidirect product of D36 and S3 acting via S3/C3=C2

metabelian, supersoluble, monomial

Aliases: D362S3, D122D9, C36.9D6, C12.13D18, (C3×C9)⋊2D8, C12.1S32, C32(D4⋊D9), C92(D4⋊S3), (C9×D12)⋊1C2, (C3×D36)⋊5C2, (C3×C18).5D4, C4.15(S3×D9), (C3×D12).1S3, (C3×C12).73D6, C6.8(C9⋊D4), C36.S31C2, C18.7(C3⋊D4), (C3×C36).8C22, C2.4(D6⋊D9), C32.2(D4⋊S3), C3.2(C322D8), C6.12(D6⋊S3), (C3×C6).41(C3⋊D4), SmallGroup(432,68)

Series: Derived Chief Lower central Upper central

C1C3×C36 — D36⋊S3
C1C3C32C3×C9C3×C18C3×C36C9×D12 — D36⋊S3
C3×C9C3×C18C3×C36 — D36⋊S3
C1C2C4

Generators and relations for D36⋊S3
 G = < a,b,c,d | a12=b2=c9=d2=1, bab=a-1, ac=ca, dad=a7, bc=cb, dbd=a3b, dcd=c-1 >

Subgroups: 424 in 74 conjugacy classes, 25 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, S3, C6, C6, C8, D4, C9, C9, C32, C12, C12, D6, C2×C6, D8, D9, C18, C18, C3×S3, C3×C6, C3⋊C8, D12, D12, C3×D4, C3×C9, C36, C36, D18, C2×C18, C3×C12, S3×C6, D4⋊S3, C3×D9, S3×C9, C3×C18, C9⋊C8, D36, D4×C9, C324C8, C3×D12, C3×D12, C3×C36, C6×D9, S3×C18, D4⋊D9, C322D8, C36.S3, C3×D36, C9×D12, D36⋊S3
Quotients: C1, C2, C22, S3, D4, D6, D8, D9, C3⋊D4, D18, S32, D4⋊S3, C9⋊D4, D6⋊S3, S3×D9, D4⋊D9, C322D8, D6⋊D9, D36⋊S3

Smallest permutation representation of D36⋊S3
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 143)(2 142)(3 141)(4 140)(5 139)(6 138)(7 137)(8 136)(9 135)(10 134)(11 133)(12 144)(13 42)(14 41)(15 40)(16 39)(17 38)(18 37)(19 48)(20 47)(21 46)(22 45)(23 44)(24 43)(25 116)(26 115)(27 114)(28 113)(29 112)(30 111)(31 110)(32 109)(33 120)(34 119)(35 118)(36 117)(49 127)(50 126)(51 125)(52 124)(53 123)(54 122)(55 121)(56 132)(57 131)(58 130)(59 129)(60 128)(61 99)(62 98)(63 97)(64 108)(65 107)(66 106)(67 105)(68 104)(69 103)(70 102)(71 101)(72 100)(73 85)(74 96)(75 95)(76 94)(77 93)(78 92)(79 91)(80 90)(81 89)(82 88)(83 87)(84 86)
(1 130 91 9 126 87 5 122 95)(2 131 92 10 127 88 6 123 96)(3 132 93 11 128 89 7 124 85)(4 121 94 12 129 90 8 125 86)(13 117 62 21 113 70 17 109 66)(14 118 63 22 114 71 18 110 67)(15 119 64 23 115 72 19 111 68)(16 120 65 24 116 61 20 112 69)(25 99 47 29 103 39 33 107 43)(26 100 48 30 104 40 34 108 44)(27 101 37 31 105 41 35 97 45)(28 102 38 32 106 42 36 98 46)(49 82 138 53 74 142 57 78 134)(50 83 139 54 75 143 58 79 135)(51 84 140 55 76 144 59 80 136)(52 73 141 56 77 133 60 81 137)
(1 33)(2 28)(3 35)(4 30)(5 25)(6 32)(7 27)(8 34)(9 29)(10 36)(11 31)(12 26)(13 58)(14 53)(15 60)(16 55)(17 50)(18 57)(19 52)(20 59)(21 54)(22 49)(23 56)(24 51)(37 128)(38 123)(39 130)(40 125)(41 132)(42 127)(43 122)(44 129)(45 124)(46 131)(47 126)(48 121)(61 80)(62 75)(63 82)(64 77)(65 84)(66 79)(67 74)(68 81)(69 76)(70 83)(71 78)(72 73)(85 97)(86 104)(87 99)(88 106)(89 101)(90 108)(91 103)(92 98)(93 105)(94 100)(95 107)(96 102)(109 135)(110 142)(111 137)(112 144)(113 139)(114 134)(115 141)(116 136)(117 143)(118 138)(119 133)(120 140)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,143)(2,142)(3,141)(4,140)(5,139)(6,138)(7,137)(8,136)(9,135)(10,134)(11,133)(12,144)(13,42)(14,41)(15,40)(16,39)(17,38)(18,37)(19,48)(20,47)(21,46)(22,45)(23,44)(24,43)(25,116)(26,115)(27,114)(28,113)(29,112)(30,111)(31,110)(32,109)(33,120)(34,119)(35,118)(36,117)(49,127)(50,126)(51,125)(52,124)(53,123)(54,122)(55,121)(56,132)(57,131)(58,130)(59,129)(60,128)(61,99)(62,98)(63,97)(64,108)(65,107)(66,106)(67,105)(68,104)(69,103)(70,102)(71,101)(72,100)(73,85)(74,96)(75,95)(76,94)(77,93)(78,92)(79,91)(80,90)(81,89)(82,88)(83,87)(84,86), (1,130,91,9,126,87,5,122,95)(2,131,92,10,127,88,6,123,96)(3,132,93,11,128,89,7,124,85)(4,121,94,12,129,90,8,125,86)(13,117,62,21,113,70,17,109,66)(14,118,63,22,114,71,18,110,67)(15,119,64,23,115,72,19,111,68)(16,120,65,24,116,61,20,112,69)(25,99,47,29,103,39,33,107,43)(26,100,48,30,104,40,34,108,44)(27,101,37,31,105,41,35,97,45)(28,102,38,32,106,42,36,98,46)(49,82,138,53,74,142,57,78,134)(50,83,139,54,75,143,58,79,135)(51,84,140,55,76,144,59,80,136)(52,73,141,56,77,133,60,81,137), (1,33)(2,28)(3,35)(4,30)(5,25)(6,32)(7,27)(8,34)(9,29)(10,36)(11,31)(12,26)(13,58)(14,53)(15,60)(16,55)(17,50)(18,57)(19,52)(20,59)(21,54)(22,49)(23,56)(24,51)(37,128)(38,123)(39,130)(40,125)(41,132)(42,127)(43,122)(44,129)(45,124)(46,131)(47,126)(48,121)(61,80)(62,75)(63,82)(64,77)(65,84)(66,79)(67,74)(68,81)(69,76)(70,83)(71,78)(72,73)(85,97)(86,104)(87,99)(88,106)(89,101)(90,108)(91,103)(92,98)(93,105)(94,100)(95,107)(96,102)(109,135)(110,142)(111,137)(112,144)(113,139)(114,134)(115,141)(116,136)(117,143)(118,138)(119,133)(120,140)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,143)(2,142)(3,141)(4,140)(5,139)(6,138)(7,137)(8,136)(9,135)(10,134)(11,133)(12,144)(13,42)(14,41)(15,40)(16,39)(17,38)(18,37)(19,48)(20,47)(21,46)(22,45)(23,44)(24,43)(25,116)(26,115)(27,114)(28,113)(29,112)(30,111)(31,110)(32,109)(33,120)(34,119)(35,118)(36,117)(49,127)(50,126)(51,125)(52,124)(53,123)(54,122)(55,121)(56,132)(57,131)(58,130)(59,129)(60,128)(61,99)(62,98)(63,97)(64,108)(65,107)(66,106)(67,105)(68,104)(69,103)(70,102)(71,101)(72,100)(73,85)(74,96)(75,95)(76,94)(77,93)(78,92)(79,91)(80,90)(81,89)(82,88)(83,87)(84,86), (1,130,91,9,126,87,5,122,95)(2,131,92,10,127,88,6,123,96)(3,132,93,11,128,89,7,124,85)(4,121,94,12,129,90,8,125,86)(13,117,62,21,113,70,17,109,66)(14,118,63,22,114,71,18,110,67)(15,119,64,23,115,72,19,111,68)(16,120,65,24,116,61,20,112,69)(25,99,47,29,103,39,33,107,43)(26,100,48,30,104,40,34,108,44)(27,101,37,31,105,41,35,97,45)(28,102,38,32,106,42,36,98,46)(49,82,138,53,74,142,57,78,134)(50,83,139,54,75,143,58,79,135)(51,84,140,55,76,144,59,80,136)(52,73,141,56,77,133,60,81,137), (1,33)(2,28)(3,35)(4,30)(5,25)(6,32)(7,27)(8,34)(9,29)(10,36)(11,31)(12,26)(13,58)(14,53)(15,60)(16,55)(17,50)(18,57)(19,52)(20,59)(21,54)(22,49)(23,56)(24,51)(37,128)(38,123)(39,130)(40,125)(41,132)(42,127)(43,122)(44,129)(45,124)(46,131)(47,126)(48,121)(61,80)(62,75)(63,82)(64,77)(65,84)(66,79)(67,74)(68,81)(69,76)(70,83)(71,78)(72,73)(85,97)(86,104)(87,99)(88,106)(89,101)(90,108)(91,103)(92,98)(93,105)(94,100)(95,107)(96,102)(109,135)(110,142)(111,137)(112,144)(113,139)(114,134)(115,141)(116,136)(117,143)(118,138)(119,133)(120,140) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,143),(2,142),(3,141),(4,140),(5,139),(6,138),(7,137),(8,136),(9,135),(10,134),(11,133),(12,144),(13,42),(14,41),(15,40),(16,39),(17,38),(18,37),(19,48),(20,47),(21,46),(22,45),(23,44),(24,43),(25,116),(26,115),(27,114),(28,113),(29,112),(30,111),(31,110),(32,109),(33,120),(34,119),(35,118),(36,117),(49,127),(50,126),(51,125),(52,124),(53,123),(54,122),(55,121),(56,132),(57,131),(58,130),(59,129),(60,128),(61,99),(62,98),(63,97),(64,108),(65,107),(66,106),(67,105),(68,104),(69,103),(70,102),(71,101),(72,100),(73,85),(74,96),(75,95),(76,94),(77,93),(78,92),(79,91),(80,90),(81,89),(82,88),(83,87),(84,86)], [(1,130,91,9,126,87,5,122,95),(2,131,92,10,127,88,6,123,96),(3,132,93,11,128,89,7,124,85),(4,121,94,12,129,90,8,125,86),(13,117,62,21,113,70,17,109,66),(14,118,63,22,114,71,18,110,67),(15,119,64,23,115,72,19,111,68),(16,120,65,24,116,61,20,112,69),(25,99,47,29,103,39,33,107,43),(26,100,48,30,104,40,34,108,44),(27,101,37,31,105,41,35,97,45),(28,102,38,32,106,42,36,98,46),(49,82,138,53,74,142,57,78,134),(50,83,139,54,75,143,58,79,135),(51,84,140,55,76,144,59,80,136),(52,73,141,56,77,133,60,81,137)], [(1,33),(2,28),(3,35),(4,30),(5,25),(6,32),(7,27),(8,34),(9,29),(10,36),(11,31),(12,26),(13,58),(14,53),(15,60),(16,55),(17,50),(18,57),(19,52),(20,59),(21,54),(22,49),(23,56),(24,51),(37,128),(38,123),(39,130),(40,125),(41,132),(42,127),(43,122),(44,129),(45,124),(46,131),(47,126),(48,121),(61,80),(62,75),(63,82),(64,77),(65,84),(66,79),(67,74),(68,81),(69,76),(70,83),(71,78),(72,73),(85,97),(86,104),(87,99),(88,106),(89,101),(90,108),(91,103),(92,98),(93,105),(94,100),(95,107),(96,102),(109,135),(110,142),(111,137),(112,144),(113,139),(114,134),(115,141),(116,136),(117,143),(118,138),(119,133),(120,140)]])

48 conjugacy classes

class 1 2A2B2C3A3B3C 4 6A6B6C6D6E6F6G8A8B9A9B9C9D9E9F12A12B12C12D18A18B18C18D18E18F18G···18L36A···36I
order122233346666666889999991212121218181818181818···1836···36
size1112362242224121236365454222444444422244412···124···4

48 irreducible representations

dim111122222222222444444444
type+++++++++++++++-++-
imageC1C2C2C2S3S3D4D6D6D8D9C3⋊D4C3⋊D4D18C9⋊D4S32D4⋊S3D4⋊S3D6⋊S3S3×D9D4⋊D9C322D8D6⋊D9D36⋊S3
kernelD36⋊S3C36.S3C3×D36C9×D12D36C3×D12C3×C18C36C3×C12C3×C9D12C18C3×C6C12C6C12C9C32C6C4C3C3C2C1
# reps111111111232236111133236

Matrix representation of D36⋊S3 in GL6(𝔽73)

010000
7200000
0072100
0072000
0000720
0000072
,
7680000
68660000
0072000
0072100
00003060
00001343
,
100000
010000
001000
000100
0000313
00007028
,
32270000
27410000
0072000
0007200
0000072
0000720

G:=sub<GL(6,GF(73))| [0,72,0,0,0,0,1,0,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[7,68,0,0,0,0,68,66,0,0,0,0,0,0,72,72,0,0,0,0,0,1,0,0,0,0,0,0,30,13,0,0,0,0,60,43],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,31,70,0,0,0,0,3,28],[32,27,0,0,0,0,27,41,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,72,0] >;

D36⋊S3 in GAP, Magma, Sage, TeX

D_{36}\rtimes S_3
% in TeX

G:=Group("D36:S3");
// GroupNames label

G:=SmallGroup(432,68);
// by ID

G=gap.SmallGroup(432,68);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,85,254,135,58,3091,662,4037,7069]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^9=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^7,b*c=c*b,d*b*d=a^3*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽