Extensions 1→N→G→Q→1 with N=C4×S3 and Q=D9

Direct product G=N×Q with N=C4×S3 and Q=D9
dρLabelID
C4×S3×D9724C4xS3xD9432,290

Semidirect products G=N:Q with N=C4×S3 and Q=D9
extensionφ:Q→Out NdρLabelID
(C4×S3)⋊1D9 = D365S3φ: D9/C9C2 ⊆ Out C4×S31444-(C4xS3):1D9432,288
(C4×S3)⋊2D9 = Dic9.D6φ: D9/C9C2 ⊆ Out C4×S3724+(C4xS3):2D9432,289
(C4×S3)⋊3D9 = S3×D36φ: D9/C9C2 ⊆ Out C4×S3724+(C4xS3):3D9432,291
(C4×S3)⋊4D9 = D6.D18φ: D9/C9C2 ⊆ Out C4×S3724(C4xS3):4D9432,287

Non-split extensions G=N.Q with N=C4×S3 and Q=D9
extensionφ:Q→Out NdρLabelID
(C4×S3).1D9 = S3×Dic18φ: D9/C9C2 ⊆ Out C4×S31444-(C4xS3).1D9432,284
(C4×S3).2D9 = D6.Dic9φ: D9/C9C2 ⊆ Out C4×S31444(C4xS3).2D9432,67
(C4×S3).3D9 = S3×C9⋊C8φ: trivial image1444(C4xS3).3D9432,66

׿
×
𝔽