Copied to
clipboard

G = C37⋊Dic3order 444 = 22·3·37

The semidirect product of C37 and Dic3 acting via Dic3/C3=C4

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C37⋊Dic3, C1111C4, D37.S3, C3⋊(C37⋊C4), (C3×D37).1C2, SmallGroup(444,10)

Series: Derived Chief Lower central Upper central

C1C111 — C37⋊Dic3
C1C37C111C3×D37 — C37⋊Dic3
C111 — C37⋊Dic3
C1

Generators and relations for C37⋊Dic3
 G = < a,b,c | a37=b6=1, c2=b3, bab-1=a-1, cac-1=a31, cbc-1=b-1 >

37C2
111C4
37C6
37Dic3
3C37⋊C4

Smallest permutation representation of C37⋊Dic3
On 111 points
Generators in S111
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37)(38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74)(75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111)
(1 83 39)(2 82 40 37 84 38)(3 81 41 36 85 74)(4 80 42 35 86 73)(5 79 43 34 87 72)(6 78 44 33 88 71)(7 77 45 32 89 70)(8 76 46 31 90 69)(9 75 47 30 91 68)(10 111 48 29 92 67)(11 110 49 28 93 66)(12 109 50 27 94 65)(13 108 51 26 95 64)(14 107 52 25 96 63)(15 106 53 24 97 62)(16 105 54 23 98 61)(17 104 55 22 99 60)(18 103 56 21 100 59)(19 102 57 20 101 58)
(2 7 37 32)(3 13 36 26)(4 19 35 20)(5 25 34 14)(6 31 33 8)(9 12 30 27)(10 18 29 21)(11 24 28 15)(16 17 23 22)(38 77 40 89)(39 83)(41 95 74 108)(42 101 73 102)(43 107 72 96)(44 76 71 90)(45 82 70 84)(46 88 69 78)(47 94 68 109)(48 100 67 103)(49 106 66 97)(50 75 65 91)(51 81 64 85)(52 87 63 79)(53 93 62 110)(54 99 61 104)(55 105 60 98)(56 111 59 92)(57 80 58 86)

G:=sub<Sym(111)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74)(75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111), (1,83,39)(2,82,40,37,84,38)(3,81,41,36,85,74)(4,80,42,35,86,73)(5,79,43,34,87,72)(6,78,44,33,88,71)(7,77,45,32,89,70)(8,76,46,31,90,69)(9,75,47,30,91,68)(10,111,48,29,92,67)(11,110,49,28,93,66)(12,109,50,27,94,65)(13,108,51,26,95,64)(14,107,52,25,96,63)(15,106,53,24,97,62)(16,105,54,23,98,61)(17,104,55,22,99,60)(18,103,56,21,100,59)(19,102,57,20,101,58), (2,7,37,32)(3,13,36,26)(4,19,35,20)(5,25,34,14)(6,31,33,8)(9,12,30,27)(10,18,29,21)(11,24,28,15)(16,17,23,22)(38,77,40,89)(39,83)(41,95,74,108)(42,101,73,102)(43,107,72,96)(44,76,71,90)(45,82,70,84)(46,88,69,78)(47,94,68,109)(48,100,67,103)(49,106,66,97)(50,75,65,91)(51,81,64,85)(52,87,63,79)(53,93,62,110)(54,99,61,104)(55,105,60,98)(56,111,59,92)(57,80,58,86)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74)(75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111), (1,83,39)(2,82,40,37,84,38)(3,81,41,36,85,74)(4,80,42,35,86,73)(5,79,43,34,87,72)(6,78,44,33,88,71)(7,77,45,32,89,70)(8,76,46,31,90,69)(9,75,47,30,91,68)(10,111,48,29,92,67)(11,110,49,28,93,66)(12,109,50,27,94,65)(13,108,51,26,95,64)(14,107,52,25,96,63)(15,106,53,24,97,62)(16,105,54,23,98,61)(17,104,55,22,99,60)(18,103,56,21,100,59)(19,102,57,20,101,58), (2,7,37,32)(3,13,36,26)(4,19,35,20)(5,25,34,14)(6,31,33,8)(9,12,30,27)(10,18,29,21)(11,24,28,15)(16,17,23,22)(38,77,40,89)(39,83)(41,95,74,108)(42,101,73,102)(43,107,72,96)(44,76,71,90)(45,82,70,84)(46,88,69,78)(47,94,68,109)(48,100,67,103)(49,106,66,97)(50,75,65,91)(51,81,64,85)(52,87,63,79)(53,93,62,110)(54,99,61,104)(55,105,60,98)(56,111,59,92)(57,80,58,86) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37),(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74),(75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111)], [(1,83,39),(2,82,40,37,84,38),(3,81,41,36,85,74),(4,80,42,35,86,73),(5,79,43,34,87,72),(6,78,44,33,88,71),(7,77,45,32,89,70),(8,76,46,31,90,69),(9,75,47,30,91,68),(10,111,48,29,92,67),(11,110,49,28,93,66),(12,109,50,27,94,65),(13,108,51,26,95,64),(14,107,52,25,96,63),(15,106,53,24,97,62),(16,105,54,23,98,61),(17,104,55,22,99,60),(18,103,56,21,100,59),(19,102,57,20,101,58)], [(2,7,37,32),(3,13,36,26),(4,19,35,20),(5,25,34,14),(6,31,33,8),(9,12,30,27),(10,18,29,21),(11,24,28,15),(16,17,23,22),(38,77,40,89),(39,83),(41,95,74,108),(42,101,73,102),(43,107,72,96),(44,76,71,90),(45,82,70,84),(46,88,69,78),(47,94,68,109),(48,100,67,103),(49,106,66,97),(50,75,65,91),(51,81,64,85),(52,87,63,79),(53,93,62,110),(54,99,61,104),(55,105,60,98),(56,111,59,92),(57,80,58,86)]])

33 conjugacy classes

class 1  2  3 4A4B 6 37A···37I111A···111R
order12344637···37111···111
size1372111111744···44···4

33 irreducible representations

dim1112244
type+++-+
imageC1C2C4S3Dic3C37⋊C4C37⋊Dic3
kernelC37⋊Dic3C3×D37C111D37C37C3C1
# reps11211918

Matrix representation of C37⋊Dic3 in GL4(𝔽1777) generated by

0100
0010
0001
1776102010141020
,
5276231055269
150955611551250
85412841548268
1634328618923
,
1000
923467961033
686118015381073
1578930941669
G:=sub<GL(4,GF(1777))| [0,0,0,1776,1,0,0,1020,0,1,0,1014,0,0,1,1020],[527,1509,854,1634,623,556,1284,328,1055,1155,1548,618,269,1250,268,923],[1,92,686,1578,0,346,1180,930,0,796,1538,94,0,1033,1073,1669] >;

C37⋊Dic3 in GAP, Magma, Sage, TeX

C_{37}\rtimes {\rm Dic}_3
% in TeX

G:=Group("C37:Dic3");
// GroupNames label

G:=SmallGroup(444,10);
// by ID

G=gap.SmallGroup(444,10);
# by ID

G:=PCGroup([4,-2,-2,-3,-37,8,98,1155,3463]);
// Polycyclic

G:=Group<a,b,c|a^37=b^6=1,c^2=b^3,b*a*b^-1=a^-1,c*a*c^-1=a^31,c*b*c^-1=b^-1>;
// generators/relations

Export

Subgroup lattice of C37⋊Dic3 in TeX

׿
×
𝔽