Copied to
clipboard

G = C3×C37⋊C4order 444 = 22·3·37

Direct product of C3 and C37⋊C4

direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C3×C37⋊C4, C1112C4, C373C12, D37.2C6, (C3×D37).2C2, SmallGroup(444,9)

Series: Derived Chief Lower central Upper central

C1C37 — C3×C37⋊C4
C1C37D37C3×D37 — C3×C37⋊C4
C37 — C3×C37⋊C4
C1C3

Generators and relations for C3×C37⋊C4
 G = < a,b,c | a3=b37=c4=1, ab=ba, ac=ca, cbc-1=b6 >

37C2
37C4
37C6
37C12

Smallest permutation representation of C3×C37⋊C4
On 111 points
Generators in S111
(1 75 38)(2 76 39)(3 77 40)(4 78 41)(5 79 42)(6 80 43)(7 81 44)(8 82 45)(9 83 46)(10 84 47)(11 85 48)(12 86 49)(13 87 50)(14 88 51)(15 89 52)(16 90 53)(17 91 54)(18 92 55)(19 93 56)(20 94 57)(21 95 58)(22 96 59)(23 97 60)(24 98 61)(25 99 62)(26 100 63)(27 101 64)(28 102 65)(29 103 66)(30 104 67)(31 105 68)(32 106 69)(33 107 70)(34 108 71)(35 109 72)(36 110 73)(37 111 74)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37)(38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74)(75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111)
(2 32 37 7)(3 26 36 13)(4 20 35 19)(5 14 34 25)(6 8 33 31)(9 27 30 12)(10 21 29 18)(11 15 28 24)(16 22 23 17)(39 69 74 44)(40 63 73 50)(41 57 72 56)(42 51 71 62)(43 45 70 68)(46 64 67 49)(47 58 66 55)(48 52 65 61)(53 59 60 54)(76 106 111 81)(77 100 110 87)(78 94 109 93)(79 88 108 99)(80 82 107 105)(83 101 104 86)(84 95 103 92)(85 89 102 98)(90 96 97 91)

G:=sub<Sym(111)| (1,75,38)(2,76,39)(3,77,40)(4,78,41)(5,79,42)(6,80,43)(7,81,44)(8,82,45)(9,83,46)(10,84,47)(11,85,48)(12,86,49)(13,87,50)(14,88,51)(15,89,52)(16,90,53)(17,91,54)(18,92,55)(19,93,56)(20,94,57)(21,95,58)(22,96,59)(23,97,60)(24,98,61)(25,99,62)(26,100,63)(27,101,64)(28,102,65)(29,103,66)(30,104,67)(31,105,68)(32,106,69)(33,107,70)(34,108,71)(35,109,72)(36,110,73)(37,111,74), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74)(75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111), (2,32,37,7)(3,26,36,13)(4,20,35,19)(5,14,34,25)(6,8,33,31)(9,27,30,12)(10,21,29,18)(11,15,28,24)(16,22,23,17)(39,69,74,44)(40,63,73,50)(41,57,72,56)(42,51,71,62)(43,45,70,68)(46,64,67,49)(47,58,66,55)(48,52,65,61)(53,59,60,54)(76,106,111,81)(77,100,110,87)(78,94,109,93)(79,88,108,99)(80,82,107,105)(83,101,104,86)(84,95,103,92)(85,89,102,98)(90,96,97,91)>;

G:=Group( (1,75,38)(2,76,39)(3,77,40)(4,78,41)(5,79,42)(6,80,43)(7,81,44)(8,82,45)(9,83,46)(10,84,47)(11,85,48)(12,86,49)(13,87,50)(14,88,51)(15,89,52)(16,90,53)(17,91,54)(18,92,55)(19,93,56)(20,94,57)(21,95,58)(22,96,59)(23,97,60)(24,98,61)(25,99,62)(26,100,63)(27,101,64)(28,102,65)(29,103,66)(30,104,67)(31,105,68)(32,106,69)(33,107,70)(34,108,71)(35,109,72)(36,110,73)(37,111,74), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37)(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74)(75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111), (2,32,37,7)(3,26,36,13)(4,20,35,19)(5,14,34,25)(6,8,33,31)(9,27,30,12)(10,21,29,18)(11,15,28,24)(16,22,23,17)(39,69,74,44)(40,63,73,50)(41,57,72,56)(42,51,71,62)(43,45,70,68)(46,64,67,49)(47,58,66,55)(48,52,65,61)(53,59,60,54)(76,106,111,81)(77,100,110,87)(78,94,109,93)(79,88,108,99)(80,82,107,105)(83,101,104,86)(84,95,103,92)(85,89,102,98)(90,96,97,91) );

G=PermutationGroup([[(1,75,38),(2,76,39),(3,77,40),(4,78,41),(5,79,42),(6,80,43),(7,81,44),(8,82,45),(9,83,46),(10,84,47),(11,85,48),(12,86,49),(13,87,50),(14,88,51),(15,89,52),(16,90,53),(17,91,54),(18,92,55),(19,93,56),(20,94,57),(21,95,58),(22,96,59),(23,97,60),(24,98,61),(25,99,62),(26,100,63),(27,101,64),(28,102,65),(29,103,66),(30,104,67),(31,105,68),(32,106,69),(33,107,70),(34,108,71),(35,109,72),(36,110,73),(37,111,74)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37),(38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74),(75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111)], [(2,32,37,7),(3,26,36,13),(4,20,35,19),(5,14,34,25),(6,8,33,31),(9,27,30,12),(10,21,29,18),(11,15,28,24),(16,22,23,17),(39,69,74,44),(40,63,73,50),(41,57,72,56),(42,51,71,62),(43,45,70,68),(46,64,67,49),(47,58,66,55),(48,52,65,61),(53,59,60,54),(76,106,111,81),(77,100,110,87),(78,94,109,93),(79,88,108,99),(80,82,107,105),(83,101,104,86),(84,95,103,92),(85,89,102,98),(90,96,97,91)]])

39 conjugacy classes

class 1  2 3A3B4A4B6A6B12A12B12C12D37A···37I111A···111R
order123344661212121237···37111···111
size1371137373737373737374···44···4

39 irreducible representations

dim11111144
type+++
imageC1C2C3C4C6C12C37⋊C4C3×C37⋊C4
kernelC3×C37⋊C4C3×D37C37⋊C4C111D37C37C3C1
# reps112224918

Matrix representation of C3×C37⋊C4 in GL5(𝔽1777)

11470000
01000
00100
00010
00001
,
10000
07616697611776
01000
00100
00010
,
7750000
01000
0128999110991623
06311285247190
011705771018538

G:=sub<GL(5,GF(1777))| [1147,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,761,1,0,0,0,669,0,1,0,0,761,0,0,1,0,1776,0,0,0],[775,0,0,0,0,0,1,1289,631,1170,0,0,991,1285,577,0,0,1099,247,1018,0,0,1623,190,538] >;

C3×C37⋊C4 in GAP, Magma, Sage, TeX

C_3\times C_{37}\rtimes C_4
% in TeX

G:=Group("C3xC37:C4");
// GroupNames label

G:=SmallGroup(444,9);
// by ID

G=gap.SmallGroup(444,9);
# by ID

G:=PCGroup([4,-2,-3,-2,-37,24,5955,1163]);
// Polycyclic

G:=Group<a,b,c|a^3=b^37=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^6>;
// generators/relations

Export

Subgroup lattice of C3×C37⋊C4 in TeX

׿
×
𝔽