Copied to
clipboard

G = (C2×C4)⋊9D28order 448 = 26·7

1st semidirect product of C2×C4 and D28 acting via D28/D14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×C4)⋊9D28, (C2×D28)⋊5C4, (C2×C28)⋊19D4, C14.2(C4×D4), C2.5(C4×D28), C14.2C22≀C2, (C2×Dic7)⋊15D4, C22.59(D4×D7), D141(C22⋊C4), C2.1(C4⋊D28), C14.3(C4⋊D4), (C22×D28).1C2, (C22×D7).66D4, (C22×C4).15D14, C22.24(C2×D28), C2.C427D7, C2.5(D28⋊C4), C2.1(C22⋊D28), C2.2(D14⋊D4), C71(C23.23D4), C14.C4227C2, C2.3(D14.5D4), C22.34(C4○D28), (C23×D7).82C22, C23.255(C22×D7), (C22×C14).290C23, (C22×C28).331C22, C22.17(Q82D7), C14.38(C22.D4), (C22×Dic7).14C22, (C2×C4)⋊2(C4×D7), (C2×C28)⋊4(C2×C4), (D7×C22×C4)⋊12C2, (C2×D14⋊C4)⋊28C2, C2.7(D7×C22⋊C4), C22.89(C2×C4×D7), (C22×D7)⋊3(C2×C4), C14.4(C2×C22⋊C4), (C2×C14).199(C2×D4), (C2×C14).49(C22×C4), (C2×C14).183(C4○D4), (C7×C2.C42)⋊14C2, SmallGroup(448,199)

Series: Derived Chief Lower central Upper central

C1C2×C14 — (C2×C4)⋊9D28
C1C7C14C2×C14C22×C14C23×D7C22×D28 — (C2×C4)⋊9D28
C7C2×C14 — (C2×C4)⋊9D28
C1C23C2.C42

Generators and relations for (C2×C4)⋊9D28
 G = < a,b,c,d | a2=b4=c28=d2=1, cbc-1=dbd=ab=ba, ac=ca, ad=da, dcd=c-1 >

Subgroups: 1692 in 286 conjugacy classes, 77 normal (51 characteristic)
C1, C2, C2, C4, C22, C22, C7, C2×C4, C2×C4, D4, C23, C23, D7, C14, C22⋊C4, C22×C4, C22×C4, C2×D4, C24, Dic7, C28, D14, D14, C2×C14, C2.C42, C2.C42, C2×C22⋊C4, C23×C4, C22×D4, C4×D7, D28, C2×Dic7, C2×Dic7, C2×C28, C2×C28, C22×D7, C22×D7, C22×C14, C23.23D4, D14⋊C4, C2×C4×D7, C2×D28, C2×D28, C22×Dic7, C22×C28, C23×D7, C14.C42, C7×C2.C42, C2×D14⋊C4, D7×C22×C4, C22×D28, (C2×C4)⋊9D28
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22⋊C4, C22×C4, C2×D4, C4○D4, D14, C2×C22⋊C4, C4×D4, C22≀C2, C4⋊D4, C22.D4, C4×D7, D28, C22×D7, C23.23D4, C2×C4×D7, C2×D28, C4○D28, D4×D7, Q82D7, C4×D28, D7×C22⋊C4, C22⋊D28, D14⋊D4, D28⋊C4, D14.5D4, C4⋊D28, (C2×C4)⋊9D28

Smallest permutation representation of (C2×C4)⋊9D28
On 224 points
Generators in S224
(1 218)(2 219)(3 220)(4 221)(5 222)(6 223)(7 224)(8 197)(9 198)(10 199)(11 200)(12 201)(13 202)(14 203)(15 204)(16 205)(17 206)(18 207)(19 208)(20 209)(21 210)(22 211)(23 212)(24 213)(25 214)(26 215)(27 216)(28 217)(29 178)(30 179)(31 180)(32 181)(33 182)(34 183)(35 184)(36 185)(37 186)(38 187)(39 188)(40 189)(41 190)(42 191)(43 192)(44 193)(45 194)(46 195)(47 196)(48 169)(49 170)(50 171)(51 172)(52 173)(53 174)(54 175)(55 176)(56 177)(57 94)(58 95)(59 96)(60 97)(61 98)(62 99)(63 100)(64 101)(65 102)(66 103)(67 104)(68 105)(69 106)(70 107)(71 108)(72 109)(73 110)(74 111)(75 112)(76 85)(77 86)(78 87)(79 88)(80 89)(81 90)(82 91)(83 92)(84 93)(113 163)(114 164)(115 165)(116 166)(117 167)(118 168)(119 141)(120 142)(121 143)(122 144)(123 145)(124 146)(125 147)(126 148)(127 149)(128 150)(129 151)(130 152)(131 153)(132 154)(133 155)(134 156)(135 157)(136 158)(137 159)(138 160)(139 161)(140 162)
(1 171 58 166)(2 51 59 117)(3 173 60 168)(4 53 61 119)(5 175 62 142)(6 55 63 121)(7 177 64 144)(8 29 65 123)(9 179 66 146)(10 31 67 125)(11 181 68 148)(12 33 69 127)(13 183 70 150)(14 35 71 129)(15 185 72 152)(16 37 73 131)(17 187 74 154)(18 39 75 133)(19 189 76 156)(20 41 77 135)(21 191 78 158)(22 43 79 137)(23 193 80 160)(24 45 81 139)(25 195 82 162)(26 47 83 113)(27 169 84 164)(28 49 57 115)(30 103 124 198)(32 105 126 200)(34 107 128 202)(36 109 130 204)(38 111 132 206)(40 85 134 208)(42 87 136 210)(44 89 138 212)(46 91 140 214)(48 93 114 216)(50 95 116 218)(52 97 118 220)(54 99 120 222)(56 101 122 224)(86 157 209 190)(88 159 211 192)(90 161 213 194)(92 163 215 196)(94 165 217 170)(96 167 219 172)(98 141 221 174)(100 143 223 176)(102 145 197 178)(104 147 199 180)(106 149 201 182)(108 151 203 184)(110 153 205 186)(112 155 207 188)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 94)(2 93)(3 92)(4 91)(5 90)(6 89)(7 88)(8 87)(9 86)(10 85)(11 112)(12 111)(13 110)(14 109)(15 108)(16 107)(17 106)(18 105)(19 104)(20 103)(21 102)(22 101)(23 100)(24 99)(25 98)(26 97)(27 96)(28 95)(29 158)(30 157)(31 156)(32 155)(33 154)(34 153)(35 152)(36 151)(37 150)(38 149)(39 148)(40 147)(41 146)(42 145)(43 144)(44 143)(45 142)(46 141)(47 168)(48 167)(49 166)(50 165)(51 164)(52 163)(53 162)(54 161)(55 160)(56 159)(57 218)(58 217)(59 216)(60 215)(61 214)(62 213)(63 212)(64 211)(65 210)(66 209)(67 208)(68 207)(69 206)(70 205)(71 204)(72 203)(73 202)(74 201)(75 200)(76 199)(77 198)(78 197)(79 224)(80 223)(81 222)(82 221)(83 220)(84 219)(113 173)(114 172)(115 171)(116 170)(117 169)(118 196)(119 195)(120 194)(121 193)(122 192)(123 191)(124 190)(125 189)(126 188)(127 187)(128 186)(129 185)(130 184)(131 183)(132 182)(133 181)(134 180)(135 179)(136 178)(137 177)(138 176)(139 175)(140 174)

G:=sub<Sym(224)| (1,218)(2,219)(3,220)(4,221)(5,222)(6,223)(7,224)(8,197)(9,198)(10,199)(11,200)(12,201)(13,202)(14,203)(15,204)(16,205)(17,206)(18,207)(19,208)(20,209)(21,210)(22,211)(23,212)(24,213)(25,214)(26,215)(27,216)(28,217)(29,178)(30,179)(31,180)(32,181)(33,182)(34,183)(35,184)(36,185)(37,186)(38,187)(39,188)(40,189)(41,190)(42,191)(43,192)(44,193)(45,194)(46,195)(47,196)(48,169)(49,170)(50,171)(51,172)(52,173)(53,174)(54,175)(55,176)(56,177)(57,94)(58,95)(59,96)(60,97)(61,98)(62,99)(63,100)(64,101)(65,102)(66,103)(67,104)(68,105)(69,106)(70,107)(71,108)(72,109)(73,110)(74,111)(75,112)(76,85)(77,86)(78,87)(79,88)(80,89)(81,90)(82,91)(83,92)(84,93)(113,163)(114,164)(115,165)(116,166)(117,167)(118,168)(119,141)(120,142)(121,143)(122,144)(123,145)(124,146)(125,147)(126,148)(127,149)(128,150)(129,151)(130,152)(131,153)(132,154)(133,155)(134,156)(135,157)(136,158)(137,159)(138,160)(139,161)(140,162), (1,171,58,166)(2,51,59,117)(3,173,60,168)(4,53,61,119)(5,175,62,142)(6,55,63,121)(7,177,64,144)(8,29,65,123)(9,179,66,146)(10,31,67,125)(11,181,68,148)(12,33,69,127)(13,183,70,150)(14,35,71,129)(15,185,72,152)(16,37,73,131)(17,187,74,154)(18,39,75,133)(19,189,76,156)(20,41,77,135)(21,191,78,158)(22,43,79,137)(23,193,80,160)(24,45,81,139)(25,195,82,162)(26,47,83,113)(27,169,84,164)(28,49,57,115)(30,103,124,198)(32,105,126,200)(34,107,128,202)(36,109,130,204)(38,111,132,206)(40,85,134,208)(42,87,136,210)(44,89,138,212)(46,91,140,214)(48,93,114,216)(50,95,116,218)(52,97,118,220)(54,99,120,222)(56,101,122,224)(86,157,209,190)(88,159,211,192)(90,161,213,194)(92,163,215,196)(94,165,217,170)(96,167,219,172)(98,141,221,174)(100,143,223,176)(102,145,197,178)(104,147,199,180)(106,149,201,182)(108,151,203,184)(110,153,205,186)(112,155,207,188), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,94)(2,93)(3,92)(4,91)(5,90)(6,89)(7,88)(8,87)(9,86)(10,85)(11,112)(12,111)(13,110)(14,109)(15,108)(16,107)(17,106)(18,105)(19,104)(20,103)(21,102)(22,101)(23,100)(24,99)(25,98)(26,97)(27,96)(28,95)(29,158)(30,157)(31,156)(32,155)(33,154)(34,153)(35,152)(36,151)(37,150)(38,149)(39,148)(40,147)(41,146)(42,145)(43,144)(44,143)(45,142)(46,141)(47,168)(48,167)(49,166)(50,165)(51,164)(52,163)(53,162)(54,161)(55,160)(56,159)(57,218)(58,217)(59,216)(60,215)(61,214)(62,213)(63,212)(64,211)(65,210)(66,209)(67,208)(68,207)(69,206)(70,205)(71,204)(72,203)(73,202)(74,201)(75,200)(76,199)(77,198)(78,197)(79,224)(80,223)(81,222)(82,221)(83,220)(84,219)(113,173)(114,172)(115,171)(116,170)(117,169)(118,196)(119,195)(120,194)(121,193)(122,192)(123,191)(124,190)(125,189)(126,188)(127,187)(128,186)(129,185)(130,184)(131,183)(132,182)(133,181)(134,180)(135,179)(136,178)(137,177)(138,176)(139,175)(140,174)>;

G:=Group( (1,218)(2,219)(3,220)(4,221)(5,222)(6,223)(7,224)(8,197)(9,198)(10,199)(11,200)(12,201)(13,202)(14,203)(15,204)(16,205)(17,206)(18,207)(19,208)(20,209)(21,210)(22,211)(23,212)(24,213)(25,214)(26,215)(27,216)(28,217)(29,178)(30,179)(31,180)(32,181)(33,182)(34,183)(35,184)(36,185)(37,186)(38,187)(39,188)(40,189)(41,190)(42,191)(43,192)(44,193)(45,194)(46,195)(47,196)(48,169)(49,170)(50,171)(51,172)(52,173)(53,174)(54,175)(55,176)(56,177)(57,94)(58,95)(59,96)(60,97)(61,98)(62,99)(63,100)(64,101)(65,102)(66,103)(67,104)(68,105)(69,106)(70,107)(71,108)(72,109)(73,110)(74,111)(75,112)(76,85)(77,86)(78,87)(79,88)(80,89)(81,90)(82,91)(83,92)(84,93)(113,163)(114,164)(115,165)(116,166)(117,167)(118,168)(119,141)(120,142)(121,143)(122,144)(123,145)(124,146)(125,147)(126,148)(127,149)(128,150)(129,151)(130,152)(131,153)(132,154)(133,155)(134,156)(135,157)(136,158)(137,159)(138,160)(139,161)(140,162), (1,171,58,166)(2,51,59,117)(3,173,60,168)(4,53,61,119)(5,175,62,142)(6,55,63,121)(7,177,64,144)(8,29,65,123)(9,179,66,146)(10,31,67,125)(11,181,68,148)(12,33,69,127)(13,183,70,150)(14,35,71,129)(15,185,72,152)(16,37,73,131)(17,187,74,154)(18,39,75,133)(19,189,76,156)(20,41,77,135)(21,191,78,158)(22,43,79,137)(23,193,80,160)(24,45,81,139)(25,195,82,162)(26,47,83,113)(27,169,84,164)(28,49,57,115)(30,103,124,198)(32,105,126,200)(34,107,128,202)(36,109,130,204)(38,111,132,206)(40,85,134,208)(42,87,136,210)(44,89,138,212)(46,91,140,214)(48,93,114,216)(50,95,116,218)(52,97,118,220)(54,99,120,222)(56,101,122,224)(86,157,209,190)(88,159,211,192)(90,161,213,194)(92,163,215,196)(94,165,217,170)(96,167,219,172)(98,141,221,174)(100,143,223,176)(102,145,197,178)(104,147,199,180)(106,149,201,182)(108,151,203,184)(110,153,205,186)(112,155,207,188), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,94)(2,93)(3,92)(4,91)(5,90)(6,89)(7,88)(8,87)(9,86)(10,85)(11,112)(12,111)(13,110)(14,109)(15,108)(16,107)(17,106)(18,105)(19,104)(20,103)(21,102)(22,101)(23,100)(24,99)(25,98)(26,97)(27,96)(28,95)(29,158)(30,157)(31,156)(32,155)(33,154)(34,153)(35,152)(36,151)(37,150)(38,149)(39,148)(40,147)(41,146)(42,145)(43,144)(44,143)(45,142)(46,141)(47,168)(48,167)(49,166)(50,165)(51,164)(52,163)(53,162)(54,161)(55,160)(56,159)(57,218)(58,217)(59,216)(60,215)(61,214)(62,213)(63,212)(64,211)(65,210)(66,209)(67,208)(68,207)(69,206)(70,205)(71,204)(72,203)(73,202)(74,201)(75,200)(76,199)(77,198)(78,197)(79,224)(80,223)(81,222)(82,221)(83,220)(84,219)(113,173)(114,172)(115,171)(116,170)(117,169)(118,196)(119,195)(120,194)(121,193)(122,192)(123,191)(124,190)(125,189)(126,188)(127,187)(128,186)(129,185)(130,184)(131,183)(132,182)(133,181)(134,180)(135,179)(136,178)(137,177)(138,176)(139,175)(140,174) );

G=PermutationGroup([[(1,218),(2,219),(3,220),(4,221),(5,222),(6,223),(7,224),(8,197),(9,198),(10,199),(11,200),(12,201),(13,202),(14,203),(15,204),(16,205),(17,206),(18,207),(19,208),(20,209),(21,210),(22,211),(23,212),(24,213),(25,214),(26,215),(27,216),(28,217),(29,178),(30,179),(31,180),(32,181),(33,182),(34,183),(35,184),(36,185),(37,186),(38,187),(39,188),(40,189),(41,190),(42,191),(43,192),(44,193),(45,194),(46,195),(47,196),(48,169),(49,170),(50,171),(51,172),(52,173),(53,174),(54,175),(55,176),(56,177),(57,94),(58,95),(59,96),(60,97),(61,98),(62,99),(63,100),(64,101),(65,102),(66,103),(67,104),(68,105),(69,106),(70,107),(71,108),(72,109),(73,110),(74,111),(75,112),(76,85),(77,86),(78,87),(79,88),(80,89),(81,90),(82,91),(83,92),(84,93),(113,163),(114,164),(115,165),(116,166),(117,167),(118,168),(119,141),(120,142),(121,143),(122,144),(123,145),(124,146),(125,147),(126,148),(127,149),(128,150),(129,151),(130,152),(131,153),(132,154),(133,155),(134,156),(135,157),(136,158),(137,159),(138,160),(139,161),(140,162)], [(1,171,58,166),(2,51,59,117),(3,173,60,168),(4,53,61,119),(5,175,62,142),(6,55,63,121),(7,177,64,144),(8,29,65,123),(9,179,66,146),(10,31,67,125),(11,181,68,148),(12,33,69,127),(13,183,70,150),(14,35,71,129),(15,185,72,152),(16,37,73,131),(17,187,74,154),(18,39,75,133),(19,189,76,156),(20,41,77,135),(21,191,78,158),(22,43,79,137),(23,193,80,160),(24,45,81,139),(25,195,82,162),(26,47,83,113),(27,169,84,164),(28,49,57,115),(30,103,124,198),(32,105,126,200),(34,107,128,202),(36,109,130,204),(38,111,132,206),(40,85,134,208),(42,87,136,210),(44,89,138,212),(46,91,140,214),(48,93,114,216),(50,95,116,218),(52,97,118,220),(54,99,120,222),(56,101,122,224),(86,157,209,190),(88,159,211,192),(90,161,213,194),(92,163,215,196),(94,165,217,170),(96,167,219,172),(98,141,221,174),(100,143,223,176),(102,145,197,178),(104,147,199,180),(106,149,201,182),(108,151,203,184),(110,153,205,186),(112,155,207,188)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,94),(2,93),(3,92),(4,91),(5,90),(6,89),(7,88),(8,87),(9,86),(10,85),(11,112),(12,111),(13,110),(14,109),(15,108),(16,107),(17,106),(18,105),(19,104),(20,103),(21,102),(22,101),(23,100),(24,99),(25,98),(26,97),(27,96),(28,95),(29,158),(30,157),(31,156),(32,155),(33,154),(34,153),(35,152),(36,151),(37,150),(38,149),(39,148),(40,147),(41,146),(42,145),(43,144),(44,143),(45,142),(46,141),(47,168),(48,167),(49,166),(50,165),(51,164),(52,163),(53,162),(54,161),(55,160),(56,159),(57,218),(58,217),(59,216),(60,215),(61,214),(62,213),(63,212),(64,211),(65,210),(66,209),(67,208),(68,207),(69,206),(70,205),(71,204),(72,203),(73,202),(74,201),(75,200),(76,199),(77,198),(78,197),(79,224),(80,223),(81,222),(82,221),(83,220),(84,219),(113,173),(114,172),(115,171),(116,170),(117,169),(118,196),(119,195),(120,194),(121,193),(122,192),(123,191),(124,190),(125,189),(126,188),(127,187),(128,186),(129,185),(130,184),(131,183),(132,182),(133,181),(134,180),(135,179),(136,178),(137,177),(138,176),(139,175),(140,174)]])

88 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M4A4B4C4D4E4F4G4H4I4J4K4L4M4N7A7B7C14A···14U28A···28AJ
order12···22222224444444444444477714···1428···28
size11···1141414142828222244441414141428282222···24···4

88 irreducible representations

dim111111122222222244
type++++++++++++++
imageC1C2C2C2C2C2C4D4D4D4D7C4○D4D14C4×D7D28C4○D28D4×D7Q82D7
kernel(C2×C4)⋊9D28C14.C42C7×C2.C42C2×D14⋊C4D7×C22×C4C22×D28C2×D28C2×Dic7C2×C28C22×D7C2.C42C2×C14C22×C4C2×C4C2×C4C22C22C22
# reps111311822434912121293

Matrix representation of (C2×C4)⋊9D28 in GL6(𝔽29)

100000
010000
001000
000100
0000280
0000028
,
2800000
0280000
0017000
0001700
0000124
0000028
,
940000
2580000
00192200
0072800
00001610
00001813
,
940000
9200000
0010700
00191900
00001319
00001116

G:=sub<GL(6,GF(29))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,17,0,0,0,0,0,0,17,0,0,0,0,0,0,1,0,0,0,0,0,24,28],[9,25,0,0,0,0,4,8,0,0,0,0,0,0,19,7,0,0,0,0,22,28,0,0,0,0,0,0,16,18,0,0,0,0,10,13],[9,9,0,0,0,0,4,20,0,0,0,0,0,0,10,19,0,0,0,0,7,19,0,0,0,0,0,0,13,11,0,0,0,0,19,16] >;

(C2×C4)⋊9D28 in GAP, Magma, Sage, TeX

(C_2\times C_4)\rtimes_9D_{28}
% in TeX

G:=Group("(C2xC4):9D28");
// GroupNames label

G:=SmallGroup(448,199);
// by ID

G=gap.SmallGroup(448,199);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,253,120,387,58,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^4=c^28=d^2=1,c*b*c^-1=d*b*d=a*b=b*a,a*c=c*a,a*d=d*a,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽