extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC4).1(C4xD7) = C23.D28 | φ: C4xD7/D7 → C4 ⊆ Aut C2xC4 | 112 | 8- | (C2xC4).1(C4xD7) | 448,30 |
(C2xC4).2(C4xD7) = C23.2D28 | φ: C4xD7/D7 → C4 ⊆ Aut C2xC4 | 56 | 8+ | (C2xC4).2(C4xD7) | 448,31 |
(C2xC4).3(C4xD7) = (C2xC4).D28 | φ: C4xD7/D7 → C4 ⊆ Aut C2xC4 | 112 | 8+ | (C2xC4).3(C4xD7) | 448,34 |
(C2xC4).4(C4xD7) = (C2xQ8).D14 | φ: C4xD7/D7 → C4 ⊆ Aut C2xC4 | 112 | 8- | (C2xC4).4(C4xD7) | 448,35 |
(C2xC4).5(C4xD7) = C23:C4:5D7 | φ: C4xD7/D7 → C4 ⊆ Aut C2xC4 | 112 | 8- | (C2xC4).5(C4xD7) | 448,274 |
(C2xC4).6(C4xD7) = D7xC4.10D4 | φ: C4xD7/D7 → C4 ⊆ Aut C2xC4 | 112 | 8- | (C2xC4).6(C4xD7) | 448,284 |
(C2xC4).7(C4xD7) = M4(2).21D14 | φ: C4xD7/D7 → C4 ⊆ Aut C2xC4 | 112 | 8+ | (C2xC4).7(C4xD7) | 448,285 |
(C2xC4).8(C4xD7) = C14.C4wrC2 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 112 | | (C2xC4).8(C4xD7) | 448,8 |
(C2xC4).9(C4xD7) = C4:Dic7:C4 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 112 | | (C2xC4).9(C4xD7) | 448,9 |
(C2xC4).10(C4xD7) = C42.D14 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 224 | | (C2xC4).10(C4xD7) | 448,21 |
(C2xC4).11(C4xD7) = C42.2D14 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 448 | | (C2xC4).11(C4xD7) | 448,22 |
(C2xC4).12(C4xD7) = C23.30D28 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 112 | | (C2xC4).12(C4xD7) | 448,24 |
(C2xC4).13(C4xD7) = C22.2D56 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 112 | | (C2xC4).13(C4xD7) | 448,27 |
(C2xC4).14(C4xD7) = C4.Dic28 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 448 | | (C2xC4).14(C4xD7) | 448,38 |
(C2xC4).15(C4xD7) = C28.47D8 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 448 | | (C2xC4).15(C4xD7) | 448,39 |
(C2xC4).16(C4xD7) = C4.D56 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 224 | | (C2xC4).16(C4xD7) | 448,42 |
(C2xC4).17(C4xD7) = C28.2D8 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 448 | | (C2xC4).17(C4xD7) | 448,43 |
(C2xC4).18(C4xD7) = C28.(C4:C4) | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 224 | | (C2xC4).18(C4xD7) | 448,87 |
(C2xC4).19(C4xD7) = (C2xC28).Q8 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 112 | 4 | (C2xC4).19(C4xD7) | 448,90 |
(C2xC4).20(C4xD7) = M4(2):Dic7 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 224 | | (C2xC4).20(C4xD7) | 448,111 |
(C2xC4).21(C4xD7) = (C2xC56):C4 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 112 | 4 | (C2xC4).21(C4xD7) | 448,113 |
(C2xC4).22(C4xD7) = (C2xC28):Q8 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 448 | | (C2xC4).22(C4xD7) | 448,180 |
(C2xC4).23(C4xD7) = C14.(C4xQ8) | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 448 | | (C2xC4).23(C4xD7) | 448,181 |
(C2xC4).24(C4xD7) = C4:Dic7:7C4 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 448 | | (C2xC4).24(C4xD7) | 448,187 |
(C2xC4).25(C4xD7) = C4:Dic7:8C4 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 448 | | (C2xC4).25(C4xD7) | 448,188 |
(C2xC4).26(C4xD7) = C14.(C4xD4) | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 448 | | (C2xC4).26(C4xD7) | 448,189 |
(C2xC4).27(C4xD7) = C2.(C4xD28) | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 224 | | (C2xC4).27(C4xD7) | 448,204 |
(C2xC4).28(C4xD7) = C56:Q8 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 448 | | (C2xC4).28(C4xD7) | 448,235 |
(C2xC4).29(C4xD7) = C8:9D28 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 224 | | (C2xC4).29(C4xD7) | 448,240 |
(C2xC4).30(C4xD7) = C56:C4:C2 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 224 | | (C2xC4).30(C4xD7) | 448,254 |
(C2xC4).31(C4xD7) = D14:C8:C2 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 224 | | (C2xC4).31(C4xD7) | 448,261 |
(C2xC4).32(C4xD7) = D14:2M4(2) | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 224 | | (C2xC4).32(C4xD7) | 448,262 |
(C2xC4).33(C4xD7) = Dic7:M4(2) | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 224 | | (C2xC4).33(C4xD7) | 448,263 |
(C2xC4).34(C4xD7) = C42.27D14 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 448 | | (C2xC4).34(C4xD7) | 448,362 |
(C2xC4).35(C4xD7) = D14:3M4(2) | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 224 | | (C2xC4).35(C4xD7) | 448,370 |
(C2xC4).36(C4xD7) = C42.30D14 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 224 | | (C2xC4).36(C4xD7) | 448,373 |
(C2xC4).37(C4xD7) = C42.31D14 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 224 | | (C2xC4).37(C4xD7) | 448,374 |
(C2xC4).38(C4xD7) = C4.Dic7:C4 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 224 | | (C2xC4).38(C4xD7) | 448,498 |
(C2xC4).39(C4xD7) = C4oD28:C4 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 224 | | (C2xC4).39(C4xD7) | 448,500 |
(C2xC4).40(C4xD7) = Dic7:(C4:C4) | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 448 | | (C2xC4).40(C4xD7) | 448,506 |
(C2xC4).41(C4xD7) = C22.23(Q8xD7) | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 448 | | (C2xC4).41(C4xD7) | 448,512 |
(C2xC4).42(C4xD7) = D14:C4:7C4 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 224 | | (C2xC4).42(C4xD7) | 448,524 |
(C2xC4).43(C4xD7) = C28.(C2xQ8) | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 224 | | (C2xC4).43(C4xD7) | 448,529 |
(C2xC4).44(C4xD7) = C4:C4:36D14 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 112 | | (C2xC4).44(C4xD7) | 448,535 |
(C2xC4).45(C4xD7) = (C2xC4).47D28 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 224 | | (C2xC4).45(C4xD7) | 448,538 |
(C2xC4).46(C4xD7) = C42:4D14 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 112 | 4 | (C2xC4).46(C4xD7) | 448,539 |
(C2xC4).47(C4xD7) = (C2xD28):13C4 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 112 | 4 | (C2xC4).47(C4xD7) | 448,540 |
(C2xC4).48(C4xD7) = C23.46D28 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 224 | | (C2xC4).48(C4xD7) | 448,654 |
(C2xC4).49(C4xD7) = C23.Dic14 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 112 | 4 | (C2xC4).49(C4xD7) | 448,658 |
(C2xC4).50(C4xD7) = C56:D4 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 224 | | (C2xC4).50(C4xD7) | 448,661 |
(C2xC4).51(C4xD7) = C56:18D4 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 224 | | (C2xC4).51(C4xD7) | 448,662 |
(C2xC4).52(C4xD7) = C2xC28.46D4 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 112 | | (C2xC4).52(C4xD7) | 448,664 |
(C2xC4).53(C4xD7) = C23.48D28 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 112 | | (C2xC4).53(C4xD7) | 448,665 |
(C2xC4).54(C4xD7) = C23.49D28 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 224 | | (C2xC4).54(C4xD7) | 448,667 |
(C2xC4).55(C4xD7) = C2xC4.12D28 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 224 | | (C2xC4).55(C4xD7) | 448,670 |
(C2xC4).56(C4xD7) = C23.20D28 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 112 | 4 | (C2xC4).56(C4xD7) | 448,673 |
(C2xC4).57(C4xD7) = C42.87D14 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 224 | | (C2xC4).57(C4xD7) | 448,969 |
(C2xC4).58(C4xD7) = C28.70C24 | φ: C4xD7/C14 → C22 ⊆ Aut C2xC4 | 112 | 4 | (C2xC4).58(C4xD7) | 448,1198 |
(C2xC4).59(C4xD7) = Dic7:C4:C4 | φ: C4xD7/Dic7 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).59(C4xD7) | 448,186 |
(C2xC4).60(C4xD7) = D14:C4:5C4 | φ: C4xD7/Dic7 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).60(C4xD7) | 448,203 |
(C2xC4).61(C4xD7) = D14.4C42 | φ: C4xD7/Dic7 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).61(C4xD7) | 448,242 |
(C2xC4).62(C4xD7) = C42.185D14 | φ: C4xD7/Dic7 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).62(C4xD7) | 448,243 |
(C2xC4).63(C4xD7) = C7:D4:C8 | φ: C4xD7/Dic7 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).63(C4xD7) | 448,259 |
(C2xC4).64(C4xD7) = C7:C8:26D4 | φ: C4xD7/Dic7 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).64(C4xD7) | 448,264 |
(C2xC4).65(C4xD7) = D28:2C8 | φ: C4xD7/Dic7 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).65(C4xD7) | 448,40 |
(C2xC4).66(C4xD7) = Dic14:2C8 | φ: C4xD7/Dic7 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).66(C4xD7) | 448,41 |
(C2xC4).67(C4xD7) = Dic14.C8 | φ: C4xD7/Dic7 → C2 ⊆ Aut C2xC4 | 224 | 4 | (C2xC4).67(C4xD7) | 448,72 |
(C2xC4).68(C4xD7) = C28.2C42 | φ: C4xD7/Dic7 → C2 ⊆ Aut C2xC4 | 112 | | (C2xC4).68(C4xD7) | 448,89 |
(C2xC4).69(C4xD7) = C28.3C42 | φ: C4xD7/Dic7 → C2 ⊆ Aut C2xC4 | 112 | | (C2xC4).69(C4xD7) | 448,112 |
(C2xC4).70(C4xD7) = Dic14:C8 | φ: C4xD7/Dic7 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).70(C4xD7) | 448,364 |
(C2xC4).71(C4xD7) = C28.M4(2) | φ: C4xD7/Dic7 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).71(C4xD7) | 448,365 |
(C2xC4).72(C4xD7) = D28:C8 | φ: C4xD7/Dic7 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).72(C4xD7) | 448,368 |
(C2xC4).73(C4xD7) = C28:2M4(2) | φ: C4xD7/Dic7 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).73(C4xD7) | 448,372 |
(C2xC4).74(C4xD7) = C16.12D14 | φ: C4xD7/Dic7 → C2 ⊆ Aut C2xC4 | 224 | 4 | (C2xC4).74(C4xD7) | 448,441 |
(C2xC4).75(C4xD7) = C2xC14.D8 | φ: C4xD7/Dic7 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).75(C4xD7) | 448,499 |
(C2xC4).76(C4xD7) = C2xC14.Q16 | φ: C4xD7/Dic7 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).76(C4xD7) | 448,503 |
(C2xC4).77(C4xD7) = C28:(C4:C4) | φ: C4xD7/Dic7 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).77(C4xD7) | 448,507 |
(C2xC4).78(C4xD7) = (C2xDic7):6Q8 | φ: C4xD7/Dic7 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).78(C4xD7) | 448,508 |
(C2xC4).79(C4xD7) = (C2xD28):10C4 | φ: C4xD7/Dic7 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).79(C4xD7) | 448,522 |
(C2xC4).80(C4xD7) = C28.5C42 | φ: C4xD7/Dic7 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).80(C4xD7) | 448,531 |
(C2xC4).81(C4xD7) = C4.(C2xD28) | φ: C4xD7/Dic7 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).81(C4xD7) | 448,536 |
(C2xC4).82(C4xD7) = C28.439(C2xD4) | φ: C4xD7/Dic7 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).82(C4xD7) | 448,653 |
(C2xC4).83(C4xD7) = C28.7C42 | φ: C4xD7/Dic7 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).83(C4xD7) | 448,656 |
(C2xC4).84(C4xD7) = (C2xD28).14C4 | φ: C4xD7/Dic7 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).84(C4xD7) | 448,663 |
(C2xC4).85(C4xD7) = C2xD28:4C4 | φ: C4xD7/Dic7 → C2 ⊆ Aut C2xC4 | 112 | | (C2xC4).85(C4xD7) | 448,672 |
(C2xC4).86(C4xD7) = C2xDic7:3Q8 | φ: C4xD7/Dic7 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).86(C4xD7) | 448,949 |
(C2xC4).87(C4xD7) = C2xD28.C4 | φ: C4xD7/Dic7 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).87(C4xD7) | 448,1197 |
(C2xC4).88(C4xD7) = D14.C42 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).88(C4xD7) | 448,223 |
(C2xC4).89(C4xD7) = C42.243D14 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).89(C4xD7) | 448,224 |
(C2xC4).90(C4xD7) = C4xDic7:C4 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).90(C4xD7) | 448,465 |
(C2xC4).91(C4xD7) = (C2xC42).D7 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).91(C4xD7) | 448,467 |
(C2xC4).92(C4xD7) = (C2xC42):D7 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).92(C4xD7) | 448,474 |
(C2xC4).93(C4xD7) = C8xC7:D4 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).93(C4xD7) | 448,643 |
(C2xC4).94(C4xD7) = C56:32D4 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).94(C4xD7) | 448,645 |
(C2xC4).95(C4xD7) = C4.8Dic28 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).95(C4xD7) | 448,13 |
(C2xC4).96(C4xD7) = C4.17D56 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).96(C4xD7) | 448,16 |
(C2xC4).97(C4xD7) = D28.C8 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 224 | 2 | (C2xC4).97(C4xD7) | 448,65 |
(C2xC4).98(C4xD7) = C28.8C42 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 112 | | (C2xC4).98(C4xD7) | 448,80 |
(C2xC4).99(C4xD7) = C28.9C42 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).99(C4xD7) | 448,108 |
(C2xC4).100(C4xD7) = C28.10C42 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).100(C4xD7) | 448,109 |
(C2xC4).101(C4xD7) = C8xDic14 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).101(C4xD7) | 448,212 |
(C2xC4).102(C4xD7) = C56:11Q8 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).102(C4xD7) | 448,213 |
(C2xC4).103(C4xD7) = C8xD28 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).103(C4xD7) | 448,220 |
(C2xC4).104(C4xD7) = C8:6D28 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).104(C4xD7) | 448,222 |
(C2xC4).105(C4xD7) = D28.4C8 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 224 | 2 | (C2xC4).105(C4xD7) | 448,435 |
(C2xC4).106(C4xD7) = C4xC4.Dic7 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).106(C4xD7) | 448,456 |
(C2xC4).107(C4xD7) = C2xDic14:C4 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 112 | | (C2xC4).107(C4xD7) | 448,461 |
(C2xC4).108(C4xD7) = C28:4(C4:C4) | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).108(C4xD7) | 448,462 |
(C2xC4).109(C4xD7) = (C2xC28):10Q8 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).109(C4xD7) | 448,463 |
(C2xC4).110(C4xD7) = C4xC4:Dic7 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).110(C4xD7) | 448,468 |
(C2xC4).111(C4xD7) = (C2xC4):6D28 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).111(C4xD7) | 448,473 |
(C2xC4).112(C4xD7) = C28.12C42 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).112(C4xD7) | 448,635 |
(C2xC4).113(C4xD7) = Dic7:C8:C2 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).113(C4xD7) | 448,636 |
(C2xC4).114(C4xD7) = C2xC28.44D4 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).114(C4xD7) | 448,637 |
(C2xC4).115(C4xD7) = (C22xC8):D7 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).115(C4xD7) | 448,644 |
(C2xC4).116(C4xD7) = C2xC2.D56 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).116(C4xD7) | 448,646 |
(C2xC4).117(C4xD7) = C23.23D28 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).117(C4xD7) | 448,647 |
(C2xC4).118(C4xD7) = C2xC4xDic14 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).118(C4xD7) | 448,920 |
(C2xC4).119(C4xD7) = C2xD28.2C4 | φ: C4xD7/C28 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).119(C4xD7) | 448,1191 |
(C2xC4).120(C4xD7) = Dic7.5C42 | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).120(C4xD7) | 448,182 |
(C2xC4).121(C4xD7) = Dic7:C42 | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).121(C4xD7) | 448,183 |
(C2xC4).122(C4xD7) = C7:(C42:8C4) | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).122(C4xD7) | 448,184 |
(C2xC4).123(C4xD7) = C7:(C42:5C4) | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).123(C4xD7) | 448,185 |
(C2xC4).124(C4xD7) = C22.58(D4xD7) | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).124(C4xD7) | 448,198 |
(C2xC4).125(C4xD7) = D14:(C4:C4) | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).125(C4xD7) | 448,201 |
(C2xC4).126(C4xD7) = D7xC8:C4 | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).126(C4xD7) | 448,238 |
(C2xC4).127(C4xD7) = C42.182D14 | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).127(C4xD7) | 448,239 |
(C2xC4).128(C4xD7) = Dic7.C42 | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).128(C4xD7) | 448,241 |
(C2xC4).129(C4xD7) = Dic7.5M4(2) | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).129(C4xD7) | 448,252 |
(C2xC4).130(C4xD7) = Dic7.M4(2) | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).130(C4xD7) | 448,253 |
(C2xC4).131(C4xD7) = D7xC22:C8 | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 112 | | (C2xC4).131(C4xD7) | 448,258 |
(C2xC4).132(C4xD7) = D14:M4(2) | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 112 | | (C2xC4).132(C4xD7) | 448,260 |
(C2xC4).133(C4xD7) = C28.53D8 | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).133(C4xD7) | 448,36 |
(C2xC4).134(C4xD7) = C28.39SD16 | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).134(C4xD7) | 448,37 |
(C2xC4).135(C4xD7) = C56.9Q8 | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 112 | 4 | (C2xC4).135(C4xD7) | 448,68 |
(C2xC4).136(C4xD7) = C112:C4 | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 112 | 4 | (C2xC4).136(C4xD7) | 448,69 |
(C2xC4).137(C4xD7) = M5(2):D7 | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 112 | 4 | (C2xC4).137(C4xD7) | 448,71 |
(C2xC4).138(C4xD7) = C28.C42 | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).138(C4xD7) | 448,86 |
(C2xC4).139(C4xD7) = C42:Dic7 | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 112 | 4 | (C2xC4).139(C4xD7) | 448,88 |
(C2xC4).140(C4xD7) = C23.9D28 | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 112 | 4 | (C2xC4).140(C4xD7) | 448,114 |
(C2xC4).141(C4xD7) = C28.4C42 | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).141(C4xD7) | 448,115 |
(C2xC4).142(C4xD7) = M4(2):4Dic7 | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 112 | 4 | (C2xC4).142(C4xD7) | 448,116 |
(C2xC4).143(C4xD7) = C28.21C42 | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 112 | 4 | (C2xC4).143(C4xD7) | 448,117 |
(C2xC4).144(C4xD7) = D7xC4:C8 | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).144(C4xD7) | 448,366 |
(C2xC4).145(C4xD7) = C42.200D14 | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).145(C4xD7) | 448,367 |
(C2xC4).146(C4xD7) = C42.202D14 | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).146(C4xD7) | 448,369 |
(C2xC4).147(C4xD7) = C28:M4(2) | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).147(C4xD7) | 448,371 |
(C2xC4).148(C4xD7) = D7xM5(2) | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 112 | 4 | (C2xC4).148(C4xD7) | 448,440 |
(C2xC4).149(C4xD7) = C2xC28.Q8 | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).149(C4xD7) | 448,496 |
(C2xC4).150(C4xD7) = C2xC4.Dic14 | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).150(C4xD7) | 448,497 |
(C2xC4).151(C4xD7) = C4:C4xDic7 | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).151(C4xD7) | 448,509 |
(C2xC4).152(C4xD7) = (C4xDic7):8C4 | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).152(C4xD7) | 448,510 |
(C2xC4).153(C4xD7) = (C4xDic7):9C4 | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 448 | | (C2xC4).153(C4xD7) | 448,511 |
(C2xC4).154(C4xD7) = C4:(D14:C4) | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).154(C4xD7) | 448,521 |
(C2xC4).155(C4xD7) = C28.45(C4:C4) | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).155(C4xD7) | 448,532 |
(C2xC4).156(C4xD7) = M4(2)xDic7 | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).156(C4xD7) | 448,651 |
(C2xC4).157(C4xD7) = Dic7:4M4(2) | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).157(C4xD7) | 448,652 |
(C2xC4).158(C4xD7) = C2xC28.53D4 | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).158(C4xD7) | 448,657 |
(C2xC4).159(C4xD7) = D14:6M4(2) | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 112 | | (C2xC4).159(C4xD7) | 448,660 |
(C2xC4).160(C4xD7) = M4(2).31D14 | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 112 | 4 | (C2xC4).160(C4xD7) | 448,666 |
(C2xC4).161(C4xD7) = C2xC4:C4:7D7 | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 224 | | (C2xC4).161(C4xD7) | 448,955 |
(C2xC4).162(C4xD7) = C2xD7xM4(2) | φ: C4xD7/D14 → C2 ⊆ Aut C2xC4 | 112 | | (C2xC4).162(C4xD7) | 448,1196 |
(C2xC4).163(C4xD7) = C8xC7:C8 | central extension (φ=1) | 448 | | (C2xC4).163(C4xD7) | 448,10 |
(C2xC4).164(C4xD7) = C42.279D14 | central extension (φ=1) | 448 | | (C2xC4).164(C4xD7) | 448,11 |
(C2xC4).165(C4xD7) = C56:C8 | central extension (φ=1) | 448 | | (C2xC4).165(C4xD7) | 448,12 |
(C2xC4).166(C4xD7) = C16xDic7 | central extension (φ=1) | 448 | | (C2xC4).166(C4xD7) | 448,57 |
(C2xC4).167(C4xD7) = Dic7:C16 | central extension (φ=1) | 448 | | (C2xC4).167(C4xD7) | 448,58 |
(C2xC4).168(C4xD7) = C112:9C4 | central extension (φ=1) | 448 | | (C2xC4).168(C4xD7) | 448,59 |
(C2xC4).169(C4xD7) = D14:C16 | central extension (φ=1) | 224 | | (C2xC4).169(C4xD7) | 448,64 |
(C2xC4).170(C4xD7) = (C2xC28):3C8 | central extension (φ=1) | 448 | | (C2xC4).170(C4xD7) | 448,81 |
(C2xC4).171(C4xD7) = (C2xC56):5C4 | central extension (φ=1) | 448 | | (C2xC4).171(C4xD7) | 448,107 |
(C2xC4).172(C4xD7) = D7xC4xC8 | central extension (φ=1) | 224 | | (C2xC4).172(C4xD7) | 448,218 |
(C2xC4).173(C4xD7) = C42.282D14 | central extension (φ=1) | 224 | | (C2xC4).173(C4xD7) | 448,219 |
(C2xC4).174(C4xD7) = C4xC8:D7 | central extension (φ=1) | 224 | | (C2xC4).174(C4xD7) | 448,221 |
(C2xC4).175(C4xD7) = D7xC2xC16 | central extension (φ=1) | 224 | | (C2xC4).175(C4xD7) | 448,433 |
(C2xC4).176(C4xD7) = C2xC16:D7 | central extension (φ=1) | 224 | | (C2xC4).176(C4xD7) | 448,434 |
(C2xC4).177(C4xD7) = C2xC4xC7:C8 | central extension (φ=1) | 448 | | (C2xC4).177(C4xD7) | 448,454 |
(C2xC4).178(C4xD7) = C2xC42.D7 | central extension (φ=1) | 448 | | (C2xC4).178(C4xD7) | 448,455 |
(C2xC4).179(C4xD7) = C42xDic7 | central extension (φ=1) | 448 | | (C2xC4).179(C4xD7) | 448,464 |
(C2xC4).180(C4xD7) = C42:4Dic7 | central extension (φ=1) | 448 | | (C2xC4).180(C4xD7) | 448,466 |
(C2xC4).181(C4xD7) = C2xC8xDic7 | central extension (φ=1) | 448 | | (C2xC4).181(C4xD7) | 448,632 |
(C2xC4).182(C4xD7) = C2xDic7:C8 | central extension (φ=1) | 448 | | (C2xC4).182(C4xD7) | 448,633 |
(C2xC4).183(C4xD7) = C2xC56:C4 | central extension (φ=1) | 448 | | (C2xC4).183(C4xD7) | 448,634 |
(C2xC4).184(C4xD7) = C2xD14:C8 | central extension (φ=1) | 224 | | (C2xC4).184(C4xD7) | 448,642 |
(C2xC4).185(C4xD7) = C2xC42:D7 | central extension (φ=1) | 224 | | (C2xC4).185(C4xD7) | 448,925 |
(C2xC4).186(C4xD7) = D7xC22xC8 | central extension (φ=1) | 224 | | (C2xC4).186(C4xD7) | 448,1189 |
(C2xC4).187(C4xD7) = C22xC8:D7 | central extension (φ=1) | 224 | | (C2xC4).187(C4xD7) | 448,1190 |