metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C4⋊1(D14⋊C4), (C2×D28)⋊10C4, C14.59(C4×D4), C28⋊2(C22⋊C4), (C2×Dic7)⋊11D4, (C2×C28).142D4, (C2×C4).144D28, C2.3(C28⋊D4), C2.5(C4⋊D28), C22.111(D4×D7), C22.48(C2×D28), C14.15(C4⋊1D4), C14.54(C4⋊D4), (C22×D28).11C2, (C22×C4).335D14, C2.18(D28⋊C4), C2.2(C28.23D4), C14.51(C4.4D4), C7⋊3(C24.3C22), (C23×D7).18C22, C23.296(C22×D7), (C22×C28).144C22, (C22×C14).352C23, C22.28(Q8⋊2D7), (C22×Dic7).192C22, (C2×C4⋊C4)⋊6D7, (C14×C4⋊C4)⋊6C2, (C2×C4×Dic7)⋊1C2, (C2×C4).79(C4×D7), (C2×D14⋊C4)⋊10C2, (C2×C28).86(C2×C4), C2.16(C2×D14⋊C4), C22.137(C2×C4×D7), (C2×C14).452(C2×D4), C14.43(C2×C22⋊C4), C22.67(C2×C7⋊D4), (C2×C4).129(C7⋊D4), (C22×D7).21(C2×C4), (C2×C14).189(C4○D4), (C2×C14).120(C22×C4), SmallGroup(448,522)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for (C2×D28)⋊10C4
G = < a,b,c,d | a2=b28=c2=d4=1, ab=ba, dcd-1=ac=ca, ad=da, cbc=b-1, dbd-1=b15 >
Subgroups: 1540 in 258 conjugacy classes, 83 normal (23 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C7, C2×C4, C2×C4, D4, C23, C23, D7, C14, C14, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C24, Dic7, C28, C28, D14, C2×C14, C2×C14, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C22×D4, D28, C2×Dic7, C2×Dic7, C2×C28, C2×C28, C22×D7, C22×D7, C22×C14, C24.3C22, C4×Dic7, D14⋊C4, C7×C4⋊C4, C2×D28, C2×D28, C22×Dic7, C22×C28, C22×C28, C23×D7, C2×C4×Dic7, C2×D14⋊C4, C14×C4⋊C4, C22×D28, (C2×D28)⋊10C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22⋊C4, C22×C4, C2×D4, C4○D4, D14, C2×C22⋊C4, C4×D4, C4⋊D4, C4.4D4, C4⋊1D4, C4×D7, D28, C7⋊D4, C22×D7, C24.3C22, D14⋊C4, C2×C4×D7, C2×D28, D4×D7, Q8⋊2D7, C2×C7⋊D4, D28⋊C4, C4⋊D28, C2×D14⋊C4, C28⋊D4, C28.23D4, (C2×D28)⋊10C4
(1 216)(2 217)(3 218)(4 219)(5 220)(6 221)(7 222)(8 223)(9 224)(10 197)(11 198)(12 199)(13 200)(14 201)(15 202)(16 203)(17 204)(18 205)(19 206)(20 207)(21 208)(22 209)(23 210)(24 211)(25 212)(26 213)(27 214)(28 215)(29 69)(30 70)(31 71)(32 72)(33 73)(34 74)(35 75)(36 76)(37 77)(38 78)(39 79)(40 80)(41 81)(42 82)(43 83)(44 84)(45 57)(46 58)(47 59)(48 60)(49 61)(50 62)(51 63)(52 64)(53 65)(54 66)(55 67)(56 68)(85 181)(86 182)(87 183)(88 184)(89 185)(90 186)(91 187)(92 188)(93 189)(94 190)(95 191)(96 192)(97 193)(98 194)(99 195)(100 196)(101 169)(102 170)(103 171)(104 172)(105 173)(106 174)(107 175)(108 176)(109 177)(110 178)(111 179)(112 180)(113 157)(114 158)(115 159)(116 160)(117 161)(118 162)(119 163)(120 164)(121 165)(122 166)(123 167)(124 168)(125 141)(126 142)(127 143)(128 144)(129 145)(130 146)(131 147)(132 148)(133 149)(134 150)(135 151)(136 152)(137 153)(138 154)(139 155)(140 156)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196)(197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 185)(2 184)(3 183)(4 182)(5 181)(6 180)(7 179)(8 178)(9 177)(10 176)(11 175)(12 174)(13 173)(14 172)(15 171)(16 170)(17 169)(18 196)(19 195)(20 194)(21 193)(22 192)(23 191)(24 190)(25 189)(26 188)(27 187)(28 186)(29 158)(30 157)(31 156)(32 155)(33 154)(34 153)(35 152)(36 151)(37 150)(38 149)(39 148)(40 147)(41 146)(42 145)(43 144)(44 143)(45 142)(46 141)(47 168)(48 167)(49 166)(50 165)(51 164)(52 163)(53 162)(54 161)(55 160)(56 159)(57 126)(58 125)(59 124)(60 123)(61 122)(62 121)(63 120)(64 119)(65 118)(66 117)(67 116)(68 115)(69 114)(70 113)(71 140)(72 139)(73 138)(74 137)(75 136)(76 135)(77 134)(78 133)(79 132)(80 131)(81 130)(82 129)(83 128)(84 127)(85 220)(86 219)(87 218)(88 217)(89 216)(90 215)(91 214)(92 213)(93 212)(94 211)(95 210)(96 209)(97 208)(98 207)(99 206)(100 205)(101 204)(102 203)(103 202)(104 201)(105 200)(106 199)(107 198)(108 197)(109 224)(110 223)(111 222)(112 221)
(1 141 179 80)(2 156 180 67)(3 143 181 82)(4 158 182 69)(5 145 183 84)(6 160 184 71)(7 147 185 58)(8 162 186 73)(9 149 187 60)(10 164 188 75)(11 151 189 62)(12 166 190 77)(13 153 191 64)(14 168 192 79)(15 155 193 66)(16 142 194 81)(17 157 195 68)(18 144 196 83)(19 159 169 70)(20 146 170 57)(21 161 171 72)(22 148 172 59)(23 163 173 74)(24 150 174 61)(25 165 175 76)(26 152 176 63)(27 167 177 78)(28 154 178 65)(29 219 114 86)(30 206 115 101)(31 221 116 88)(32 208 117 103)(33 223 118 90)(34 210 119 105)(35 197 120 92)(36 212 121 107)(37 199 122 94)(38 214 123 109)(39 201 124 96)(40 216 125 111)(41 203 126 98)(42 218 127 85)(43 205 128 100)(44 220 129 87)(45 207 130 102)(46 222 131 89)(47 209 132 104)(48 224 133 91)(49 211 134 106)(50 198 135 93)(51 213 136 108)(52 200 137 95)(53 215 138 110)(54 202 139 97)(55 217 140 112)(56 204 113 99)
G:=sub<Sym(224)| (1,216)(2,217)(3,218)(4,219)(5,220)(6,221)(7,222)(8,223)(9,224)(10,197)(11,198)(12,199)(13,200)(14,201)(15,202)(16,203)(17,204)(18,205)(19,206)(20,207)(21,208)(22,209)(23,210)(24,211)(25,212)(26,213)(27,214)(28,215)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,81)(42,82)(43,83)(44,84)(45,57)(46,58)(47,59)(48,60)(49,61)(50,62)(51,63)(52,64)(53,65)(54,66)(55,67)(56,68)(85,181)(86,182)(87,183)(88,184)(89,185)(90,186)(91,187)(92,188)(93,189)(94,190)(95,191)(96,192)(97,193)(98,194)(99,195)(100,196)(101,169)(102,170)(103,171)(104,172)(105,173)(106,174)(107,175)(108,176)(109,177)(110,178)(111,179)(112,180)(113,157)(114,158)(115,159)(116,160)(117,161)(118,162)(119,163)(120,164)(121,165)(122,166)(123,167)(124,168)(125,141)(126,142)(127,143)(128,144)(129,145)(130,146)(131,147)(132,148)(133,149)(134,150)(135,151)(136,152)(137,153)(138,154)(139,155)(140,156), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,185)(2,184)(3,183)(4,182)(5,181)(6,180)(7,179)(8,178)(9,177)(10,176)(11,175)(12,174)(13,173)(14,172)(15,171)(16,170)(17,169)(18,196)(19,195)(20,194)(21,193)(22,192)(23,191)(24,190)(25,189)(26,188)(27,187)(28,186)(29,158)(30,157)(31,156)(32,155)(33,154)(34,153)(35,152)(36,151)(37,150)(38,149)(39,148)(40,147)(41,146)(42,145)(43,144)(44,143)(45,142)(46,141)(47,168)(48,167)(49,166)(50,165)(51,164)(52,163)(53,162)(54,161)(55,160)(56,159)(57,126)(58,125)(59,124)(60,123)(61,122)(62,121)(63,120)(64,119)(65,118)(66,117)(67,116)(68,115)(69,114)(70,113)(71,140)(72,139)(73,138)(74,137)(75,136)(76,135)(77,134)(78,133)(79,132)(80,131)(81,130)(82,129)(83,128)(84,127)(85,220)(86,219)(87,218)(88,217)(89,216)(90,215)(91,214)(92,213)(93,212)(94,211)(95,210)(96,209)(97,208)(98,207)(99,206)(100,205)(101,204)(102,203)(103,202)(104,201)(105,200)(106,199)(107,198)(108,197)(109,224)(110,223)(111,222)(112,221), (1,141,179,80)(2,156,180,67)(3,143,181,82)(4,158,182,69)(5,145,183,84)(6,160,184,71)(7,147,185,58)(8,162,186,73)(9,149,187,60)(10,164,188,75)(11,151,189,62)(12,166,190,77)(13,153,191,64)(14,168,192,79)(15,155,193,66)(16,142,194,81)(17,157,195,68)(18,144,196,83)(19,159,169,70)(20,146,170,57)(21,161,171,72)(22,148,172,59)(23,163,173,74)(24,150,174,61)(25,165,175,76)(26,152,176,63)(27,167,177,78)(28,154,178,65)(29,219,114,86)(30,206,115,101)(31,221,116,88)(32,208,117,103)(33,223,118,90)(34,210,119,105)(35,197,120,92)(36,212,121,107)(37,199,122,94)(38,214,123,109)(39,201,124,96)(40,216,125,111)(41,203,126,98)(42,218,127,85)(43,205,128,100)(44,220,129,87)(45,207,130,102)(46,222,131,89)(47,209,132,104)(48,224,133,91)(49,211,134,106)(50,198,135,93)(51,213,136,108)(52,200,137,95)(53,215,138,110)(54,202,139,97)(55,217,140,112)(56,204,113,99)>;
G:=Group( (1,216)(2,217)(3,218)(4,219)(5,220)(6,221)(7,222)(8,223)(9,224)(10,197)(11,198)(12,199)(13,200)(14,201)(15,202)(16,203)(17,204)(18,205)(19,206)(20,207)(21,208)(22,209)(23,210)(24,211)(25,212)(26,213)(27,214)(28,215)(29,69)(30,70)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,81)(42,82)(43,83)(44,84)(45,57)(46,58)(47,59)(48,60)(49,61)(50,62)(51,63)(52,64)(53,65)(54,66)(55,67)(56,68)(85,181)(86,182)(87,183)(88,184)(89,185)(90,186)(91,187)(92,188)(93,189)(94,190)(95,191)(96,192)(97,193)(98,194)(99,195)(100,196)(101,169)(102,170)(103,171)(104,172)(105,173)(106,174)(107,175)(108,176)(109,177)(110,178)(111,179)(112,180)(113,157)(114,158)(115,159)(116,160)(117,161)(118,162)(119,163)(120,164)(121,165)(122,166)(123,167)(124,168)(125,141)(126,142)(127,143)(128,144)(129,145)(130,146)(131,147)(132,148)(133,149)(134,150)(135,151)(136,152)(137,153)(138,154)(139,155)(140,156), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196)(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,185)(2,184)(3,183)(4,182)(5,181)(6,180)(7,179)(8,178)(9,177)(10,176)(11,175)(12,174)(13,173)(14,172)(15,171)(16,170)(17,169)(18,196)(19,195)(20,194)(21,193)(22,192)(23,191)(24,190)(25,189)(26,188)(27,187)(28,186)(29,158)(30,157)(31,156)(32,155)(33,154)(34,153)(35,152)(36,151)(37,150)(38,149)(39,148)(40,147)(41,146)(42,145)(43,144)(44,143)(45,142)(46,141)(47,168)(48,167)(49,166)(50,165)(51,164)(52,163)(53,162)(54,161)(55,160)(56,159)(57,126)(58,125)(59,124)(60,123)(61,122)(62,121)(63,120)(64,119)(65,118)(66,117)(67,116)(68,115)(69,114)(70,113)(71,140)(72,139)(73,138)(74,137)(75,136)(76,135)(77,134)(78,133)(79,132)(80,131)(81,130)(82,129)(83,128)(84,127)(85,220)(86,219)(87,218)(88,217)(89,216)(90,215)(91,214)(92,213)(93,212)(94,211)(95,210)(96,209)(97,208)(98,207)(99,206)(100,205)(101,204)(102,203)(103,202)(104,201)(105,200)(106,199)(107,198)(108,197)(109,224)(110,223)(111,222)(112,221), (1,141,179,80)(2,156,180,67)(3,143,181,82)(4,158,182,69)(5,145,183,84)(6,160,184,71)(7,147,185,58)(8,162,186,73)(9,149,187,60)(10,164,188,75)(11,151,189,62)(12,166,190,77)(13,153,191,64)(14,168,192,79)(15,155,193,66)(16,142,194,81)(17,157,195,68)(18,144,196,83)(19,159,169,70)(20,146,170,57)(21,161,171,72)(22,148,172,59)(23,163,173,74)(24,150,174,61)(25,165,175,76)(26,152,176,63)(27,167,177,78)(28,154,178,65)(29,219,114,86)(30,206,115,101)(31,221,116,88)(32,208,117,103)(33,223,118,90)(34,210,119,105)(35,197,120,92)(36,212,121,107)(37,199,122,94)(38,214,123,109)(39,201,124,96)(40,216,125,111)(41,203,126,98)(42,218,127,85)(43,205,128,100)(44,220,129,87)(45,207,130,102)(46,222,131,89)(47,209,132,104)(48,224,133,91)(49,211,134,106)(50,198,135,93)(51,213,136,108)(52,200,137,95)(53,215,138,110)(54,202,139,97)(55,217,140,112)(56,204,113,99) );
G=PermutationGroup([[(1,216),(2,217),(3,218),(4,219),(5,220),(6,221),(7,222),(8,223),(9,224),(10,197),(11,198),(12,199),(13,200),(14,201),(15,202),(16,203),(17,204),(18,205),(19,206),(20,207),(21,208),(22,209),(23,210),(24,211),(25,212),(26,213),(27,214),(28,215),(29,69),(30,70),(31,71),(32,72),(33,73),(34,74),(35,75),(36,76),(37,77),(38,78),(39,79),(40,80),(41,81),(42,82),(43,83),(44,84),(45,57),(46,58),(47,59),(48,60),(49,61),(50,62),(51,63),(52,64),(53,65),(54,66),(55,67),(56,68),(85,181),(86,182),(87,183),(88,184),(89,185),(90,186),(91,187),(92,188),(93,189),(94,190),(95,191),(96,192),(97,193),(98,194),(99,195),(100,196),(101,169),(102,170),(103,171),(104,172),(105,173),(106,174),(107,175),(108,176),(109,177),(110,178),(111,179),(112,180),(113,157),(114,158),(115,159),(116,160),(117,161),(118,162),(119,163),(120,164),(121,165),(122,166),(123,167),(124,168),(125,141),(126,142),(127,143),(128,144),(129,145),(130,146),(131,147),(132,148),(133,149),(134,150),(135,151),(136,152),(137,153),(138,154),(139,155),(140,156)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196),(197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,185),(2,184),(3,183),(4,182),(5,181),(6,180),(7,179),(8,178),(9,177),(10,176),(11,175),(12,174),(13,173),(14,172),(15,171),(16,170),(17,169),(18,196),(19,195),(20,194),(21,193),(22,192),(23,191),(24,190),(25,189),(26,188),(27,187),(28,186),(29,158),(30,157),(31,156),(32,155),(33,154),(34,153),(35,152),(36,151),(37,150),(38,149),(39,148),(40,147),(41,146),(42,145),(43,144),(44,143),(45,142),(46,141),(47,168),(48,167),(49,166),(50,165),(51,164),(52,163),(53,162),(54,161),(55,160),(56,159),(57,126),(58,125),(59,124),(60,123),(61,122),(62,121),(63,120),(64,119),(65,118),(66,117),(67,116),(68,115),(69,114),(70,113),(71,140),(72,139),(73,138),(74,137),(75,136),(76,135),(77,134),(78,133),(79,132),(80,131),(81,130),(82,129),(83,128),(84,127),(85,220),(86,219),(87,218),(88,217),(89,216),(90,215),(91,214),(92,213),(93,212),(94,211),(95,210),(96,209),(97,208),(98,207),(99,206),(100,205),(101,204),(102,203),(103,202),(104,201),(105,200),(106,199),(107,198),(108,197),(109,224),(110,223),(111,222),(112,221)], [(1,141,179,80),(2,156,180,67),(3,143,181,82),(4,158,182,69),(5,145,183,84),(6,160,184,71),(7,147,185,58),(8,162,186,73),(9,149,187,60),(10,164,188,75),(11,151,189,62),(12,166,190,77),(13,153,191,64),(14,168,192,79),(15,155,193,66),(16,142,194,81),(17,157,195,68),(18,144,196,83),(19,159,169,70),(20,146,170,57),(21,161,171,72),(22,148,172,59),(23,163,173,74),(24,150,174,61),(25,165,175,76),(26,152,176,63),(27,167,177,78),(28,154,178,65),(29,219,114,86),(30,206,115,101),(31,221,116,88),(32,208,117,103),(33,223,118,90),(34,210,119,105),(35,197,120,92),(36,212,121,107),(37,199,122,94),(38,214,123,109),(39,201,124,96),(40,216,125,111),(41,203,126,98),(42,218,127,85),(43,205,128,100),(44,220,129,87),(45,207,130,102),(46,222,131,89),(47,209,132,104),(48,224,133,91),(49,211,134,106),(50,198,135,93),(51,213,136,108),(52,200,137,95),(53,215,138,110),(54,202,139,97),(55,217,140,112),(56,204,113,99)]])
88 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | ··· | 4P | 7A | 7B | 7C | 14A | ··· | 14U | 28A | ··· | 28AJ |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | ··· | 1 | 28 | 28 | 28 | 28 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 14 | ··· | 14 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
88 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | ||||
image | C1 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | D7 | C4○D4 | D14 | C4×D7 | D28 | C7⋊D4 | D4×D7 | Q8⋊2D7 |
kernel | (C2×D28)⋊10C4 | C2×C4×Dic7 | C2×D14⋊C4 | C14×C4⋊C4 | C22×D28 | C2×D28 | C2×Dic7 | C2×C28 | C2×C4⋊C4 | C2×C14 | C22×C4 | C2×C4 | C2×C4 | C2×C4 | C22 | C22 |
# reps | 1 | 1 | 4 | 1 | 1 | 8 | 4 | 4 | 3 | 4 | 9 | 12 | 12 | 12 | 6 | 6 |
Matrix representation of (C2×D28)⋊10C4 ►in GL6(𝔽29)
28 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
11 | 11 | 0 | 0 | 0 | 0 |
7 | 15 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 11 | 0 | 0 |
0 | 0 | 7 | 15 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 19 |
0 | 0 | 0 | 0 | 15 | 27 |
28 | 0 | 0 | 0 | 0 | 0 |
26 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 3 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 12 | 28 |
22 | 24 | 0 | 0 | 0 | 0 |
10 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 26 | 2 | 0 | 0 |
0 | 0 | 25 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 28 | 17 |
G:=sub<GL(6,GF(29))| [28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[11,7,0,0,0,0,11,15,0,0,0,0,0,0,11,7,0,0,0,0,11,15,0,0,0,0,0,0,2,15,0,0,0,0,19,27],[28,26,0,0,0,0,0,1,0,0,0,0,0,0,1,3,0,0,0,0,0,28,0,0,0,0,0,0,1,12,0,0,0,0,0,28],[22,10,0,0,0,0,24,7,0,0,0,0,0,0,26,25,0,0,0,0,2,3,0,0,0,0,0,0,12,28,0,0,0,0,0,17] >;
(C2×D28)⋊10C4 in GAP, Magma, Sage, TeX
(C_2\times D_{28})\rtimes_{10}C_4
% in TeX
G:=Group("(C2xD28):10C4");
// GroupNames label
G:=SmallGroup(448,522);
// by ID
G=gap.SmallGroup(448,522);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,477,232,422,387,58,18822]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^28=c^2=d^4=1,a*b=b*a,d*c*d^-1=a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d^-1=b^15>;
// generators/relations