Copied to
clipboard

G = C16⋊D14order 448 = 26·7

1st semidirect product of C16 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C161D14, C56.2D4, C8.3D28, D1122C2, C4.14D56, C28.14D8, C1121C22, D568C22, M5(2)⋊1D7, C22.5D56, C56.59C23, Dic287C22, (C2×C14).6D8, (C2×D56)⋊11C2, C112⋊C21C2, C71(C16⋊C22), (C2×C8).73D14, (C2×C4).41D28, C14.13(C2×D8), C4.40(C2×D28), C2.15(C2×D56), D567C29C2, (C2×C28).128D4, C28.283(C2×D4), (C7×M5(2))⋊1C2, C8.49(C22×D7), (C2×C56).59C22, SmallGroup(448,442)

Series: Derived Chief Lower central Upper central

C1C56 — C16⋊D14
C1C7C14C28C56D56C2×D56 — C16⋊D14
C7C14C28C56 — C16⋊D14
C1C2C2×C4C2×C8M5(2)

Generators and relations for C16⋊D14
 G = < a,b,c | a16=b14=c2=1, bab-1=a9, cac=a7, cbc=b-1 >

Subgroups: 820 in 90 conjugacy classes, 35 normal (25 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, Q8, C23, D7, C14, C14, C16, C2×C8, D8, SD16, Q16, C2×D4, C4○D4, Dic7, C28, D14, C2×C14, M5(2), D16, SD32, C2×D8, C4○D8, C56, Dic14, C4×D7, D28, C7⋊D4, C2×C28, C22×D7, C16⋊C22, C112, C56⋊C2, D56, D56, D56, Dic28, C2×C56, C2×D28, C4○D28, D112, C112⋊C2, C7×M5(2), C2×D56, D567C2, C16⋊D14
Quotients: C1, C2, C22, D4, C23, D7, D8, C2×D4, D14, C2×D8, D28, C22×D7, C16⋊C22, D56, C2×D28, C2×D56, C16⋊D14

Smallest permutation representation of C16⋊D14
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 77 82 47 30 56 99)(2 70 83 40 31 49 100 10 78 91 48 23 57 108)(3 79 84 33 32 58 101)(4 72 85 42 17 51 102 12 80 93 34 25 59 110)(5 65 86 35 18 60 103)(6 74 87 44 19 53 104 14 66 95 36 27 61 112)(7 67 88 37 20 62 105)(8 76 89 46 21 55 106 16 68 81 38 29 63 98)(9 69 90 39 22 64 107)(11 71 92 41 24 50 109)(13 73 94 43 26 52 111)(15 75 96 45 28 54 97)
(1 101)(2 108)(3 99)(4 106)(5 97)(6 104)(7 111)(8 102)(9 109)(10 100)(11 107)(12 98)(13 105)(14 112)(15 103)(16 110)(17 89)(18 96)(19 87)(20 94)(21 85)(22 92)(23 83)(24 90)(25 81)(26 88)(27 95)(28 86)(29 93)(30 84)(31 91)(32 82)(33 47)(34 38)(35 45)(37 43)(39 41)(40 48)(42 46)(49 78)(50 69)(51 76)(52 67)(53 74)(54 65)(55 72)(56 79)(57 70)(58 77)(59 68)(60 75)(61 66)(62 73)(63 80)(64 71)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,77,82,47,30,56,99)(2,70,83,40,31,49,100,10,78,91,48,23,57,108)(3,79,84,33,32,58,101)(4,72,85,42,17,51,102,12,80,93,34,25,59,110)(5,65,86,35,18,60,103)(6,74,87,44,19,53,104,14,66,95,36,27,61,112)(7,67,88,37,20,62,105)(8,76,89,46,21,55,106,16,68,81,38,29,63,98)(9,69,90,39,22,64,107)(11,71,92,41,24,50,109)(13,73,94,43,26,52,111)(15,75,96,45,28,54,97), (1,101)(2,108)(3,99)(4,106)(5,97)(6,104)(7,111)(8,102)(9,109)(10,100)(11,107)(12,98)(13,105)(14,112)(15,103)(16,110)(17,89)(18,96)(19,87)(20,94)(21,85)(22,92)(23,83)(24,90)(25,81)(26,88)(27,95)(28,86)(29,93)(30,84)(31,91)(32,82)(33,47)(34,38)(35,45)(37,43)(39,41)(40,48)(42,46)(49,78)(50,69)(51,76)(52,67)(53,74)(54,65)(55,72)(56,79)(57,70)(58,77)(59,68)(60,75)(61,66)(62,73)(63,80)(64,71)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,77,82,47,30,56,99)(2,70,83,40,31,49,100,10,78,91,48,23,57,108)(3,79,84,33,32,58,101)(4,72,85,42,17,51,102,12,80,93,34,25,59,110)(5,65,86,35,18,60,103)(6,74,87,44,19,53,104,14,66,95,36,27,61,112)(7,67,88,37,20,62,105)(8,76,89,46,21,55,106,16,68,81,38,29,63,98)(9,69,90,39,22,64,107)(11,71,92,41,24,50,109)(13,73,94,43,26,52,111)(15,75,96,45,28,54,97), (1,101)(2,108)(3,99)(4,106)(5,97)(6,104)(7,111)(8,102)(9,109)(10,100)(11,107)(12,98)(13,105)(14,112)(15,103)(16,110)(17,89)(18,96)(19,87)(20,94)(21,85)(22,92)(23,83)(24,90)(25,81)(26,88)(27,95)(28,86)(29,93)(30,84)(31,91)(32,82)(33,47)(34,38)(35,45)(37,43)(39,41)(40,48)(42,46)(49,78)(50,69)(51,76)(52,67)(53,74)(54,65)(55,72)(56,79)(57,70)(58,77)(59,68)(60,75)(61,66)(62,73)(63,80)(64,71) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,77,82,47,30,56,99),(2,70,83,40,31,49,100,10,78,91,48,23,57,108),(3,79,84,33,32,58,101),(4,72,85,42,17,51,102,12,80,93,34,25,59,110),(5,65,86,35,18,60,103),(6,74,87,44,19,53,104,14,66,95,36,27,61,112),(7,67,88,37,20,62,105),(8,76,89,46,21,55,106,16,68,81,38,29,63,98),(9,69,90,39,22,64,107),(11,71,92,41,24,50,109),(13,73,94,43,26,52,111),(15,75,96,45,28,54,97)], [(1,101),(2,108),(3,99),(4,106),(5,97),(6,104),(7,111),(8,102),(9,109),(10,100),(11,107),(12,98),(13,105),(14,112),(15,103),(16,110),(17,89),(18,96),(19,87),(20,94),(21,85),(22,92),(23,83),(24,90),(25,81),(26,88),(27,95),(28,86),(29,93),(30,84),(31,91),(32,82),(33,47),(34,38),(35,45),(37,43),(39,41),(40,48),(42,46),(49,78),(50,69),(51,76),(52,67),(53,74),(54,65),(55,72),(56,79),(57,70),(58,77),(59,68),(60,75),(61,66),(62,73),(63,80),(64,71)]])

76 conjugacy classes

class 1 2A2B2C2D2E4A4B4C7A7B7C8A8B8C14A14B14C14D14E14F16A16B16C16D28A···28F28G28H28I56A···56L56M···56R112A···112X
order1222224447778881414141414141616161628···2828282856···5656···56112···112
size112565656225622222422244444442···24442···24···44···4

76 irreducible representations

dim1111112222222222244
type+++++++++++++++++++
imageC1C2C2C2C2C2D4D4D7D8D8D14D14D28D28D56D56C16⋊C22C16⋊D14
kernelC16⋊D14D112C112⋊C2C7×M5(2)C2×D56D567C2C56C2×C28M5(2)C28C2×C14C16C2×C8C8C2×C4C4C22C7C1
# reps1221111132263661212212

Matrix representation of C16⋊D14 in GL4(𝔽113) generated by

101110
010111
68781120
35150112
,
888800
253400
88882525
25348879
,
1054000
86800
43861994
93701394
G:=sub<GL(4,GF(113))| [1,0,68,35,0,1,78,15,111,0,112,0,0,111,0,112],[88,25,88,25,88,34,88,34,0,0,25,88,0,0,25,79],[105,86,43,93,40,8,86,70,0,0,19,13,0,0,94,94] >;

C16⋊D14 in GAP, Magma, Sage, TeX

C_{16}\rtimes D_{14}
% in TeX

G:=Group("C16:D14");
// GroupNames label

G:=SmallGroup(448,442);
// by ID

G=gap.SmallGroup(448,442);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,254,387,142,675,192,1684,102,18822]);
// Polycyclic

G:=Group<a,b,c|a^16=b^14=c^2=1,b*a*b^-1=a^9,c*a*c=a^7,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽