Extensions 1→N→G→Q→1 with N=D567C2 and Q=C2

Direct product G=N×Q with N=D567C2 and Q=C2
dρLabelID
C2×D567C2224C2xD56:7C2448,1194

Semidirect products G=N:Q with N=D567C2 and Q=C2
extensionφ:Q→Out NdρLabelID
D567C21C2 = D1127C2φ: C2/C1C2 ⊆ Out D567C22242D56:7C2:1C2448,438
D567C22C2 = D8.D14φ: C2/C1C2 ⊆ Out D567C21124D56:7C2:2C2448,681
D567C23C2 = D813D14φ: C2/C1C2 ⊆ Out D567C21124D56:7C2:3C2448,1210
D567C24C2 = D28.30D4φ: C2/C1C2 ⊆ Out D567C22244D56:7C2:4C2448,1219
D567C25C2 = C56.30C23φ: C2/C1C2 ⊆ Out D567C22244D56:7C2:5C2448,728
D567C26C2 = D7×C4○D8φ: C2/C1C2 ⊆ Out D567C21124D56:7C2:6C2448,1220
D567C27C2 = D810D14φ: C2/C1C2 ⊆ Out D567C21124D56:7C2:7C2448,1221
D567C28C2 = D28.29D4φ: C2/C1C2 ⊆ Out D567C21124D56:7C2:8C2448,1215
D567C29C2 = C16⋊D14φ: C2/C1C2 ⊆ Out D567C21124+D56:7C2:9C2448,442
D567C210C2 = C56.9C23φ: C2/C1C2 ⊆ Out D567C21124D56:7C2:10C2448,1201
D567C211C2 = D4.11D28φ: C2/C1C2 ⊆ Out D567C21124D56:7C2:11C2448,1204
D567C212C2 = D4.12D28φ: C2/C1C2 ⊆ Out D567C21124+D56:7C2:12C2448,1205
D567C213C2 = D4.13D28φ: C2/C1C2 ⊆ Out D567C22244-D56:7C2:13C2448,1206

Non-split extensions G=N.Q with N=D567C2 and Q=C2
extensionφ:Q→Out NdρLabelID
D567C2.1C2 = D56.1C4φ: C2/C1C2 ⊆ Out D567C22242D56:7C2.1C2448,67
D567C2.2C2 = Q16.D14φ: C2/C1C2 ⊆ Out D567C22244D56:7C2.2C2448,713
D567C2.3C2 = Dic28.C4φ: C2/C1C2 ⊆ Out D567C22244D56:7C2.3C2448,54
D567C2.4C2 = D5610C4φ: C2/C1C2 ⊆ Out D567C21124D56:7C2.4C2448,428
D567C2.5C2 = D567C4φ: C2/C1C2 ⊆ Out D567C21124D56:7C2.5C2448,429
D567C2.6C2 = D568C4φ: C2/C1C2 ⊆ Out D567C21124D56:7C2.6C2448,45
D567C2.7C2 = D562C4φ: C2/C1C2 ⊆ Out D567C21124D56:7C2.7C2448,75
D567C2.8C2 = D564C4φ: C2/C1C2 ⊆ Out D567C21124D56:7C2.8C2448,251
D567C2.9C2 = C16.D14φ: C2/C1C2 ⊆ Out D567C22244-D56:7C2.9C2448,443
D567C2.10C2 = D5611C4φ: trivial image1122D56:7C2.10C2448,234

׿
×
𝔽