Extensions 1→N→G→Q→1 with N=M5(2) and Q=D7

Direct product G=N×Q with N=M5(2) and Q=D7
dρLabelID
D7×M5(2)1124D7xM5(2)448,440

Semidirect products G=N:Q with N=M5(2) and Q=D7
extensionφ:Q→Out NdρLabelID
M5(2)⋊1D7 = C16⋊D14φ: D7/C7C2 ⊆ Out M5(2)1124+M5(2):1D7448,442
M5(2)⋊2D7 = C16.D14φ: D7/C7C2 ⊆ Out M5(2)2244-M5(2):2D7448,443
M5(2)⋊3D7 = M5(2)⋊D7φ: D7/C7C2 ⊆ Out M5(2)1124M5(2):3D7448,71
M5(2)⋊4D7 = Dic14.C8φ: D7/C7C2 ⊆ Out M5(2)2244M5(2):4D7448,72
M5(2)⋊5D7 = C28.3D8φ: D7/C7C2 ⊆ Out M5(2)1124+M5(2):5D7448,73
M5(2)⋊6D7 = D562C4φ: D7/C7C2 ⊆ Out M5(2)1124M5(2):6D7448,75
M5(2)⋊7D7 = C16.12D14φ: trivial image2244M5(2):7D7448,441

Non-split extensions G=N.Q with N=M5(2) and Q=D7
extensionφ:Q→Out NdρLabelID
M5(2).1D7 = C16⋊Dic7φ: D7/C7C2 ⊆ Out M5(2)1124M5(2).1D7448,70
M5(2).2D7 = C56.9Q8φ: D7/C7C2 ⊆ Out M5(2)1124M5(2).2D7448,68
M5(2).3D7 = C112⋊C4φ: D7/C7C2 ⊆ Out M5(2)1124M5(2).3D7448,69
M5(2).4D7 = C28.4D8φ: D7/C7C2 ⊆ Out M5(2)2244-M5(2).4D7448,74

׿
×
𝔽