Copied to
clipboard

G = C562D4order 448 = 26·7

2nd semidirect product of C56 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C562D4, C23.17D28, C81(C7⋊D4), C76(C8⋊D4), C561C418C2, (C2×C8).77D14, (C2×C4).51D28, C28.420(C2×D4), (C2×C28).297D4, (C2×M4(2))⋊1D7, C2.D5641C2, C287D4.17C2, (C14×M4(2))⋊1C2, (C2×C56).63C22, C28.230(C4○D4), C4.114(C4○D28), C28.44D441C2, C28.48D441C2, C2.22(C8⋊D14), C14.73(C4⋊D4), C2.21(C287D4), C14.22(C8⋊C22), (C2×C28).775C23, (C2×D28).20C22, C22.134(C2×D28), (C22×C4).142D14, (C22×C14).103D4, C4⋊Dic7.26C22, C2.22(C8.D14), C14.22(C8.C22), (C22×C28).304C22, (C2×Dic14).19C22, (C2×C56⋊C2)⋊2C2, C4.113(C2×C7⋊D4), (C2×C14).165(C2×D4), (C2×C4).724(C22×D7), SmallGroup(448,668)

Series: Derived Chief Lower central Upper central

C1C2×C28 — C562D4
C1C7C14C2×C14C2×C28C2×D28C2×C56⋊C2 — C562D4
C7C14C2×C28 — C562D4
C1C22C22×C4C2×M4(2)

Generators and relations for C562D4
 G = < a,b,c | a56=b4=c2=1, bab-1=a-1, cac=a27, cbc=b-1 >

Subgroups: 708 in 120 conjugacy classes, 43 normal (39 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, D4, Q8, C23, C23, D7, C14, C14, C22⋊C4, C4⋊C4, C2×C8, M4(2), SD16, C22×C4, C2×D4, C2×Q8, Dic7, C28, C28, D14, C2×C14, C2×C14, D4⋊C4, Q8⋊C4, C2.D8, C4⋊D4, C22⋊Q8, C2×M4(2), C2×SD16, C56, C56, Dic14, D28, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C22×D7, C22×C14, C8⋊D4, C56⋊C2, Dic7⋊C4, C4⋊Dic7, D14⋊C4, C23.D7, C2×C56, C7×M4(2), C2×Dic14, C2×D28, C2×C7⋊D4, C22×C28, C28.44D4, C561C4, C2.D56, C2×C56⋊C2, C28.48D4, C287D4, C14×M4(2), C562D4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, D14, C4⋊D4, C8⋊C22, C8.C22, D28, C7⋊D4, C22×D7, C8⋊D4, C2×D28, C4○D28, C2×C7⋊D4, C8⋊D14, C8.D14, C287D4, C562D4

Smallest permutation representation of C562D4
On 224 points
Generators in S224
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224)
(1 68 149 179)(2 67 150 178)(3 66 151 177)(4 65 152 176)(5 64 153 175)(6 63 154 174)(7 62 155 173)(8 61 156 172)(9 60 157 171)(10 59 158 170)(11 58 159 169)(12 57 160 224)(13 112 161 223)(14 111 162 222)(15 110 163 221)(16 109 164 220)(17 108 165 219)(18 107 166 218)(19 106 167 217)(20 105 168 216)(21 104 113 215)(22 103 114 214)(23 102 115 213)(24 101 116 212)(25 100 117 211)(26 99 118 210)(27 98 119 209)(28 97 120 208)(29 96 121 207)(30 95 122 206)(31 94 123 205)(32 93 124 204)(33 92 125 203)(34 91 126 202)(35 90 127 201)(36 89 128 200)(37 88 129 199)(38 87 130 198)(39 86 131 197)(40 85 132 196)(41 84 133 195)(42 83 134 194)(43 82 135 193)(44 81 136 192)(45 80 137 191)(46 79 138 190)(47 78 139 189)(48 77 140 188)(49 76 141 187)(50 75 142 186)(51 74 143 185)(52 73 144 184)(53 72 145 183)(54 71 146 182)(55 70 147 181)(56 69 148 180)
(1 179)(2 206)(3 177)(4 204)(5 175)(6 202)(7 173)(8 200)(9 171)(10 198)(11 169)(12 196)(13 223)(14 194)(15 221)(16 192)(17 219)(18 190)(19 217)(20 188)(21 215)(22 186)(23 213)(24 184)(25 211)(26 182)(27 209)(28 180)(29 207)(30 178)(31 205)(32 176)(33 203)(34 174)(35 201)(36 172)(37 199)(38 170)(39 197)(40 224)(41 195)(42 222)(43 193)(44 220)(45 191)(46 218)(47 189)(48 216)(49 187)(50 214)(51 185)(52 212)(53 183)(54 210)(55 181)(56 208)(57 132)(58 159)(59 130)(60 157)(61 128)(62 155)(63 126)(64 153)(65 124)(66 151)(67 122)(68 149)(69 120)(70 147)(71 118)(72 145)(73 116)(74 143)(75 114)(76 141)(77 168)(78 139)(79 166)(80 137)(81 164)(82 135)(83 162)(84 133)(85 160)(86 131)(87 158)(88 129)(89 156)(90 127)(91 154)(92 125)(93 152)(94 123)(95 150)(96 121)(97 148)(98 119)(99 146)(100 117)(101 144)(102 115)(103 142)(104 113)(105 140)(106 167)(107 138)(108 165)(109 136)(110 163)(111 134)(112 161)

G:=sub<Sym(224)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,68,149,179)(2,67,150,178)(3,66,151,177)(4,65,152,176)(5,64,153,175)(6,63,154,174)(7,62,155,173)(8,61,156,172)(9,60,157,171)(10,59,158,170)(11,58,159,169)(12,57,160,224)(13,112,161,223)(14,111,162,222)(15,110,163,221)(16,109,164,220)(17,108,165,219)(18,107,166,218)(19,106,167,217)(20,105,168,216)(21,104,113,215)(22,103,114,214)(23,102,115,213)(24,101,116,212)(25,100,117,211)(26,99,118,210)(27,98,119,209)(28,97,120,208)(29,96,121,207)(30,95,122,206)(31,94,123,205)(32,93,124,204)(33,92,125,203)(34,91,126,202)(35,90,127,201)(36,89,128,200)(37,88,129,199)(38,87,130,198)(39,86,131,197)(40,85,132,196)(41,84,133,195)(42,83,134,194)(43,82,135,193)(44,81,136,192)(45,80,137,191)(46,79,138,190)(47,78,139,189)(48,77,140,188)(49,76,141,187)(50,75,142,186)(51,74,143,185)(52,73,144,184)(53,72,145,183)(54,71,146,182)(55,70,147,181)(56,69,148,180), (1,179)(2,206)(3,177)(4,204)(5,175)(6,202)(7,173)(8,200)(9,171)(10,198)(11,169)(12,196)(13,223)(14,194)(15,221)(16,192)(17,219)(18,190)(19,217)(20,188)(21,215)(22,186)(23,213)(24,184)(25,211)(26,182)(27,209)(28,180)(29,207)(30,178)(31,205)(32,176)(33,203)(34,174)(35,201)(36,172)(37,199)(38,170)(39,197)(40,224)(41,195)(42,222)(43,193)(44,220)(45,191)(46,218)(47,189)(48,216)(49,187)(50,214)(51,185)(52,212)(53,183)(54,210)(55,181)(56,208)(57,132)(58,159)(59,130)(60,157)(61,128)(62,155)(63,126)(64,153)(65,124)(66,151)(67,122)(68,149)(69,120)(70,147)(71,118)(72,145)(73,116)(74,143)(75,114)(76,141)(77,168)(78,139)(79,166)(80,137)(81,164)(82,135)(83,162)(84,133)(85,160)(86,131)(87,158)(88,129)(89,156)(90,127)(91,154)(92,125)(93,152)(94,123)(95,150)(96,121)(97,148)(98,119)(99,146)(100,117)(101,144)(102,115)(103,142)(104,113)(105,140)(106,167)(107,138)(108,165)(109,136)(110,163)(111,134)(112,161)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224), (1,68,149,179)(2,67,150,178)(3,66,151,177)(4,65,152,176)(5,64,153,175)(6,63,154,174)(7,62,155,173)(8,61,156,172)(9,60,157,171)(10,59,158,170)(11,58,159,169)(12,57,160,224)(13,112,161,223)(14,111,162,222)(15,110,163,221)(16,109,164,220)(17,108,165,219)(18,107,166,218)(19,106,167,217)(20,105,168,216)(21,104,113,215)(22,103,114,214)(23,102,115,213)(24,101,116,212)(25,100,117,211)(26,99,118,210)(27,98,119,209)(28,97,120,208)(29,96,121,207)(30,95,122,206)(31,94,123,205)(32,93,124,204)(33,92,125,203)(34,91,126,202)(35,90,127,201)(36,89,128,200)(37,88,129,199)(38,87,130,198)(39,86,131,197)(40,85,132,196)(41,84,133,195)(42,83,134,194)(43,82,135,193)(44,81,136,192)(45,80,137,191)(46,79,138,190)(47,78,139,189)(48,77,140,188)(49,76,141,187)(50,75,142,186)(51,74,143,185)(52,73,144,184)(53,72,145,183)(54,71,146,182)(55,70,147,181)(56,69,148,180), (1,179)(2,206)(3,177)(4,204)(5,175)(6,202)(7,173)(8,200)(9,171)(10,198)(11,169)(12,196)(13,223)(14,194)(15,221)(16,192)(17,219)(18,190)(19,217)(20,188)(21,215)(22,186)(23,213)(24,184)(25,211)(26,182)(27,209)(28,180)(29,207)(30,178)(31,205)(32,176)(33,203)(34,174)(35,201)(36,172)(37,199)(38,170)(39,197)(40,224)(41,195)(42,222)(43,193)(44,220)(45,191)(46,218)(47,189)(48,216)(49,187)(50,214)(51,185)(52,212)(53,183)(54,210)(55,181)(56,208)(57,132)(58,159)(59,130)(60,157)(61,128)(62,155)(63,126)(64,153)(65,124)(66,151)(67,122)(68,149)(69,120)(70,147)(71,118)(72,145)(73,116)(74,143)(75,114)(76,141)(77,168)(78,139)(79,166)(80,137)(81,164)(82,135)(83,162)(84,133)(85,160)(86,131)(87,158)(88,129)(89,156)(90,127)(91,154)(92,125)(93,152)(94,123)(95,150)(96,121)(97,148)(98,119)(99,146)(100,117)(101,144)(102,115)(103,142)(104,113)(105,140)(106,167)(107,138)(108,165)(109,136)(110,163)(111,134)(112,161) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224)], [(1,68,149,179),(2,67,150,178),(3,66,151,177),(4,65,152,176),(5,64,153,175),(6,63,154,174),(7,62,155,173),(8,61,156,172),(9,60,157,171),(10,59,158,170),(11,58,159,169),(12,57,160,224),(13,112,161,223),(14,111,162,222),(15,110,163,221),(16,109,164,220),(17,108,165,219),(18,107,166,218),(19,106,167,217),(20,105,168,216),(21,104,113,215),(22,103,114,214),(23,102,115,213),(24,101,116,212),(25,100,117,211),(26,99,118,210),(27,98,119,209),(28,97,120,208),(29,96,121,207),(30,95,122,206),(31,94,123,205),(32,93,124,204),(33,92,125,203),(34,91,126,202),(35,90,127,201),(36,89,128,200),(37,88,129,199),(38,87,130,198),(39,86,131,197),(40,85,132,196),(41,84,133,195),(42,83,134,194),(43,82,135,193),(44,81,136,192),(45,80,137,191),(46,79,138,190),(47,78,139,189),(48,77,140,188),(49,76,141,187),(50,75,142,186),(51,74,143,185),(52,73,144,184),(53,72,145,183),(54,71,146,182),(55,70,147,181),(56,69,148,180)], [(1,179),(2,206),(3,177),(4,204),(5,175),(6,202),(7,173),(8,200),(9,171),(10,198),(11,169),(12,196),(13,223),(14,194),(15,221),(16,192),(17,219),(18,190),(19,217),(20,188),(21,215),(22,186),(23,213),(24,184),(25,211),(26,182),(27,209),(28,180),(29,207),(30,178),(31,205),(32,176),(33,203),(34,174),(35,201),(36,172),(37,199),(38,170),(39,197),(40,224),(41,195),(42,222),(43,193),(44,220),(45,191),(46,218),(47,189),(48,216),(49,187),(50,214),(51,185),(52,212),(53,183),(54,210),(55,181),(56,208),(57,132),(58,159),(59,130),(60,157),(61,128),(62,155),(63,126),(64,153),(65,124),(66,151),(67,122),(68,149),(69,120),(70,147),(71,118),(72,145),(73,116),(74,143),(75,114),(76,141),(77,168),(78,139),(79,166),(80,137),(81,164),(82,135),(83,162),(84,133),(85,160),(86,131),(87,158),(88,129),(89,156),(90,127),(91,154),(92,125),(93,152),(94,123),(95,150),(96,121),(97,148),(98,119),(99,146),(100,117),(101,144),(102,115),(103,142),(104,113),(105,140),(106,167),(107,138),(108,165),(109,136),(110,163),(111,134),(112,161)]])

76 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F7A7B7C8A8B8C8D14A···14I14J···14O28A···28L28M···28R56A···56X
order122222444444777888814···1414···1428···2828···2856···56
size111145622456565622244442···24···42···24···44···4

76 irreducible representations

dim11111111222222222224444
type+++++++++++++++++-+-
imageC1C2C2C2C2C2C2C2D4D4D4D7C4○D4D14D14C7⋊D4D28D28C4○D28C8⋊C22C8.C22C8⋊D14C8.D14
kernelC562D4C28.44D4C561C4C2.D56C2×C56⋊C2C28.48D4C287D4C14×M4(2)C56C2×C28C22×C14C2×M4(2)C28C2×C8C22×C4C8C2×C4C23C4C14C14C2C2
# reps1111111121132631266121166

Matrix representation of C562D4 in GL6(𝔽113)

100000
010000
004908035
0065300111
0099140112
0011181134
,
39870000
102740000
00605200
00595300
0011181134
0099140112
,
39870000
15740000
00605200
00595300
00618511279
00349701

G:=sub<GL(6,GF(113))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,49,65,99,111,0,0,0,30,14,81,0,0,80,0,0,1,0,0,35,111,112,34],[39,102,0,0,0,0,87,74,0,0,0,0,0,0,60,59,111,99,0,0,52,53,81,14,0,0,0,0,1,0,0,0,0,0,34,112],[39,15,0,0,0,0,87,74,0,0,0,0,0,0,60,59,61,34,0,0,52,53,85,97,0,0,0,0,112,0,0,0,0,0,79,1] >;

C562D4 in GAP, Magma, Sage, TeX

C_{56}\rtimes_2D_4
% in TeX

G:=Group("C56:2D4");
// GroupNames label

G:=SmallGroup(448,668);
// by ID

G=gap.SmallGroup(448,668);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,253,120,254,387,1684,102,18822]);
// Polycyclic

G:=Group<a,b,c|a^56=b^4=c^2=1,b*a*b^-1=a^-1,c*a*c=a^27,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽