Extensions 1→N→G→Q→1 with N=D4.D14 and Q=C2

Direct product G=N×Q with N=D4.D14 and Q=C2
dρLabelID
C2×D4.D14112C2xD4.D14448,1246

Semidirect products G=N:Q with N=D4.D14 and Q=C2
extensionφ:Q→Out NdρLabelID
D4.D141C2 = D28.3D4φ: C2/C1C2 ⊆ Out D4.D141128+D4.D14:1C2448,283
D4.D142C2 = D28.14D4φ: C2/C1C2 ⊆ Out D4.D141124D4.D14:2C2448,596
D4.D143C2 = D285D4φ: C2/C1C2 ⊆ Out D4.D14564D4.D14:3C2448,611
D4.D144C2 = C56.23D4φ: C2/C1C2 ⊆ Out D4.D141124D4.D14:4C2448,694
D4.D145C2 = D2818D4φ: C2/C1C2 ⊆ Out D4.D14568+D4.D14:5C2448,732
D4.D146C2 = D28.38D4φ: C2/C1C2 ⊆ Out D4.D141128-D4.D14:6C2448,735
D4.D147C2 = D813D14φ: C2/C1C2 ⊆ Out D4.D141124D4.D14:7C2448,1210
D4.D148C2 = D28.29D4φ: C2/C1C2 ⊆ Out D4.D141124D4.D14:8C2448,1215
D4.D149C2 = D7×C8⋊C22φ: C2/C1C2 ⊆ Out D4.D14568+D4.D14:9C2448,1225
D4.D1410C2 = SD16⋊D14φ: C2/C1C2 ⊆ Out D4.D141128-D4.D14:10C2448,1226
D4.D1411C2 = D28.32C23φ: C2/C1C2 ⊆ Out D4.D141128+D4.D14:11C2448,1288
D4.D1412C2 = D28.33C23φ: C2/C1C2 ⊆ Out D4.D141128-D4.D14:12C2448,1289
D4.D1413C2 = C28.C24φ: trivial image1124D4.D14:13C2448,1275

Non-split extensions G=N.Q with N=D4.D14 and Q=C2
extensionφ:Q→Out NdρLabelID
D4.D14.1C2 = D28.2D4φ: C2/C1C2 ⊆ Out D4.D141128-D4.D14.1C2448,282
D4.D14.2C2 = C56.44D4φ: C2/C1C2 ⊆ Out D4.D141124D4.D14.2C2448,711

׿
×
𝔽