Copied to
clipboard

G = D28.38D4order 448 = 26·7

8th non-split extension by D28 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D28.38D4, Dic14.38D4, M4(2).14D14, C8⋊C223D7, C4○D4.6D14, (C7×D4).13D4, C4.105(D4×D7), (C7×Q8).13D4, (C2×D4).81D14, C28.197(C2×D4), C74(D4.8D4), (C2×Dic7).5D4, D284C410C2, C22.36(D4×D7), C14.64C22≀C2, D42Dic77C2, D4.D146C2, C28.17D47C2, D4.10(C7⋊D4), (C2×C28).16C23, Q8.10(C7⋊D4), D4.10D142C2, C4.12D2810C2, C4○D28.24C22, C2.32(C23⋊D14), (D4×C14).106C22, (C4×Dic7).58C22, C4.Dic7.26C22, (C7×M4(2)).24C22, (C2×Dic14).135C22, (C7×C8⋊C22)⋊7C2, C4.53(C2×C7⋊D4), (C2×C14).35(C2×D4), (C2×C4).16(C22×D7), (C7×C4○D4).14C22, SmallGroup(448,735)

Series: Derived Chief Lower central Upper central

C1C2×C28 — D28.38D4
C1C7C14C28C2×C28C4○D28D4.10D14 — D28.38D4
C7C14C2×C28 — D28.38D4
C1C2C2×C4C8⋊C22

Generators and relations for D28.38D4
 G = < a,b,c,d | a28=b2=1, c4=d2=a14, bab=a-1, cac-1=a15, ad=da, cbc-1=a7b, bd=db, dcd-1=c3 >

Subgroups: 748 in 146 conjugacy classes, 39 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, D7, C14, C14, C42, C22⋊C4, M4(2), M4(2), D8, SD16, C2×D4, C2×Q8, C4○D4, C4○D4, Dic7, C28, C28, D14, C2×C14, C2×C14, C4.10D4, C4≀C2, C4.4D4, C8⋊C22, C8⋊C22, 2- 1+4, C7⋊C8, C56, Dic14, Dic14, C4×D7, D28, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C22×C14, D4.8D4, C4.Dic7, C4×Dic7, D4⋊D7, D4.D7, C23.D7, C7×M4(2), C7×D8, C7×SD16, C2×Dic14, C2×Dic14, C4○D28, C4○D28, D42D7, Q8×D7, D4×C14, C7×C4○D4, C4.12D28, D284C4, D42Dic7, D4.D14, C28.17D4, C7×C8⋊C22, D4.10D14, D28.38D4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, D14, C22≀C2, C7⋊D4, C22×D7, D4.8D4, D4×D7, C2×C7⋊D4, C23⋊D14, D28.38D4

Smallest permutation representation of D28.38D4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 95)(2 94)(3 93)(4 92)(5 91)(6 90)(7 89)(8 88)(9 87)(10 86)(11 85)(12 112)(13 111)(14 110)(15 109)(16 108)(17 107)(18 106)(19 105)(20 104)(21 103)(22 102)(23 101)(24 100)(25 99)(26 98)(27 97)(28 96)(29 74)(30 73)(31 72)(32 71)(33 70)(34 69)(35 68)(36 67)(37 66)(38 65)(39 64)(40 63)(41 62)(42 61)(43 60)(44 59)(45 58)(46 57)(47 84)(48 83)(49 82)(50 81)(51 80)(52 79)(53 78)(54 77)(55 76)(56 75)
(1 89 22 96 15 103 8 110)(2 104 23 111 16 90 9 97)(3 91 24 98 17 105 10 112)(4 106 25 85 18 92 11 99)(5 93 26 100 19 107 12 86)(6 108 27 87 20 94 13 101)(7 95 28 102 21 109 14 88)(29 66 50 73 43 80 36 59)(30 81 51 60 44 67 37 74)(31 68 52 75 45 82 38 61)(32 83 53 62 46 69 39 76)(33 70 54 77 47 84 40 63)(34 57 55 64 48 71 41 78)(35 72 56 79 49 58 42 65)
(1 74 15 60)(2 75 16 61)(3 76 17 62)(4 77 18 63)(5 78 19 64)(6 79 20 65)(7 80 21 66)(8 81 22 67)(9 82 23 68)(10 83 24 69)(11 84 25 70)(12 57 26 71)(13 58 27 72)(14 59 28 73)(29 109 43 95)(30 110 44 96)(31 111 45 97)(32 112 46 98)(33 85 47 99)(34 86 48 100)(35 87 49 101)(36 88 50 102)(37 89 51 103)(38 90 52 104)(39 91 53 105)(40 92 54 106)(41 93 55 107)(42 94 56 108)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,95)(2,94)(3,93)(4,92)(5,91)(6,90)(7,89)(8,88)(9,87)(10,86)(11,85)(12,112)(13,111)(14,110)(15,109)(16,108)(17,107)(18,106)(19,105)(20,104)(21,103)(22,102)(23,101)(24,100)(25,99)(26,98)(27,97)(28,96)(29,74)(30,73)(31,72)(32,71)(33,70)(34,69)(35,68)(36,67)(37,66)(38,65)(39,64)(40,63)(41,62)(42,61)(43,60)(44,59)(45,58)(46,57)(47,84)(48,83)(49,82)(50,81)(51,80)(52,79)(53,78)(54,77)(55,76)(56,75), (1,89,22,96,15,103,8,110)(2,104,23,111,16,90,9,97)(3,91,24,98,17,105,10,112)(4,106,25,85,18,92,11,99)(5,93,26,100,19,107,12,86)(6,108,27,87,20,94,13,101)(7,95,28,102,21,109,14,88)(29,66,50,73,43,80,36,59)(30,81,51,60,44,67,37,74)(31,68,52,75,45,82,38,61)(32,83,53,62,46,69,39,76)(33,70,54,77,47,84,40,63)(34,57,55,64,48,71,41,78)(35,72,56,79,49,58,42,65), (1,74,15,60)(2,75,16,61)(3,76,17,62)(4,77,18,63)(5,78,19,64)(6,79,20,65)(7,80,21,66)(8,81,22,67)(9,82,23,68)(10,83,24,69)(11,84,25,70)(12,57,26,71)(13,58,27,72)(14,59,28,73)(29,109,43,95)(30,110,44,96)(31,111,45,97)(32,112,46,98)(33,85,47,99)(34,86,48,100)(35,87,49,101)(36,88,50,102)(37,89,51,103)(38,90,52,104)(39,91,53,105)(40,92,54,106)(41,93,55,107)(42,94,56,108)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,95)(2,94)(3,93)(4,92)(5,91)(6,90)(7,89)(8,88)(9,87)(10,86)(11,85)(12,112)(13,111)(14,110)(15,109)(16,108)(17,107)(18,106)(19,105)(20,104)(21,103)(22,102)(23,101)(24,100)(25,99)(26,98)(27,97)(28,96)(29,74)(30,73)(31,72)(32,71)(33,70)(34,69)(35,68)(36,67)(37,66)(38,65)(39,64)(40,63)(41,62)(42,61)(43,60)(44,59)(45,58)(46,57)(47,84)(48,83)(49,82)(50,81)(51,80)(52,79)(53,78)(54,77)(55,76)(56,75), (1,89,22,96,15,103,8,110)(2,104,23,111,16,90,9,97)(3,91,24,98,17,105,10,112)(4,106,25,85,18,92,11,99)(5,93,26,100,19,107,12,86)(6,108,27,87,20,94,13,101)(7,95,28,102,21,109,14,88)(29,66,50,73,43,80,36,59)(30,81,51,60,44,67,37,74)(31,68,52,75,45,82,38,61)(32,83,53,62,46,69,39,76)(33,70,54,77,47,84,40,63)(34,57,55,64,48,71,41,78)(35,72,56,79,49,58,42,65), (1,74,15,60)(2,75,16,61)(3,76,17,62)(4,77,18,63)(5,78,19,64)(6,79,20,65)(7,80,21,66)(8,81,22,67)(9,82,23,68)(10,83,24,69)(11,84,25,70)(12,57,26,71)(13,58,27,72)(14,59,28,73)(29,109,43,95)(30,110,44,96)(31,111,45,97)(32,112,46,98)(33,85,47,99)(34,86,48,100)(35,87,49,101)(36,88,50,102)(37,89,51,103)(38,90,52,104)(39,91,53,105)(40,92,54,106)(41,93,55,107)(42,94,56,108) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,95),(2,94),(3,93),(4,92),(5,91),(6,90),(7,89),(8,88),(9,87),(10,86),(11,85),(12,112),(13,111),(14,110),(15,109),(16,108),(17,107),(18,106),(19,105),(20,104),(21,103),(22,102),(23,101),(24,100),(25,99),(26,98),(27,97),(28,96),(29,74),(30,73),(31,72),(32,71),(33,70),(34,69),(35,68),(36,67),(37,66),(38,65),(39,64),(40,63),(41,62),(42,61),(43,60),(44,59),(45,58),(46,57),(47,84),(48,83),(49,82),(50,81),(51,80),(52,79),(53,78),(54,77),(55,76),(56,75)], [(1,89,22,96,15,103,8,110),(2,104,23,111,16,90,9,97),(3,91,24,98,17,105,10,112),(4,106,25,85,18,92,11,99),(5,93,26,100,19,107,12,86),(6,108,27,87,20,94,13,101),(7,95,28,102,21,109,14,88),(29,66,50,73,43,80,36,59),(30,81,51,60,44,67,37,74),(31,68,52,75,45,82,38,61),(32,83,53,62,46,69,39,76),(33,70,54,77,47,84,40,63),(34,57,55,64,48,71,41,78),(35,72,56,79,49,58,42,65)], [(1,74,15,60),(2,75,16,61),(3,76,17,62),(4,77,18,63),(5,78,19,64),(6,79,20,65),(7,80,21,66),(8,81,22,67),(9,82,23,68),(10,83,24,69),(11,84,25,70),(12,57,26,71),(13,58,27,72),(14,59,28,73),(29,109,43,95),(30,110,44,96),(31,111,45,97),(32,112,46,98),(33,85,47,99),(34,86,48,100),(35,87,49,101),(36,88,50,102),(37,89,51,103),(38,90,52,104),(39,91,53,105),(40,92,54,106),(41,93,55,107),(42,94,56,108)]])

49 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D···4H7A7B7C8A8B14A14B14C14D14E14F14G···14O28A···28F28G28H28I56A···56F
order1222224444···47778814141414141414···1428···2828282856···56
size112482822428···282228562224448···84···48888···8

49 irreducible representations

dim11111111222222222224448
type+++++++++++++++++++-
imageC1C2C2C2C2C2C2C2D4D4D4D4D4D7D14D14D14C7⋊D4C7⋊D4D4.8D4D4×D7D4×D7D28.38D4
kernelD28.38D4C4.12D28D284C4D42Dic7D4.D14C28.17D4C7×C8⋊C22D4.10D14Dic14D28C2×Dic7C7×D4C7×Q8C8⋊C22M4(2)C2×D4C4○D4D4Q8C7C4C22C1
# reps11111111112113333662333

Matrix representation of D28.38D4 in GL8(𝔽113)

339000000
1041000000
003490000
002500000
000015000
000009800
0000056150
0000360098
,
41154300000
4572106700000
74014150000
303931990000
0000133108
00001113080
00003979832
0000151782100
,
63130650000
1006755630000
10456361000000
5887102600000
0000311000106
00003021060
0000936011183
000031841382
,
1011301030000
100105351120000
90831111000000
2087102220000
00003021060
0000311000106
0000732183111
000043178213

G:=sub<GL(8,GF(113))| [33,104,0,0,0,0,0,0,9,1,0,0,0,0,0,0,0,0,34,25,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,0,15,0,0,36,0,0,0,0,0,98,56,0,0,0,0,0,0,0,15,0,0,0,0,0,0,0,0,98],[41,45,74,30,0,0,0,0,15,72,0,39,0,0,0,0,43,106,14,31,0,0,0,0,0,70,15,99,0,0,0,0,0,0,0,0,13,111,39,15,0,0,0,0,31,30,79,17,0,0,0,0,0,8,83,82,0,0,0,0,8,0,2,100],[63,100,104,58,0,0,0,0,13,67,56,87,0,0,0,0,0,55,36,102,0,0,0,0,65,63,100,60,0,0,0,0,0,0,0,0,31,30,93,31,0,0,0,0,100,2,60,84,0,0,0,0,0,106,111,13,0,0,0,0,106,0,83,82],[101,100,90,20,0,0,0,0,13,105,83,87,0,0,0,0,0,35,111,102,0,0,0,0,103,112,100,22,0,0,0,0,0,0,0,0,30,31,73,43,0,0,0,0,2,100,21,17,0,0,0,0,106,0,83,82,0,0,0,0,0,106,111,13] >;

D28.38D4 in GAP, Magma, Sage, TeX

D_{28}._{38}D_4
% in TeX

G:=Group("D28.38D4");
// GroupNames label

G:=SmallGroup(448,735);
// by ID

G=gap.SmallGroup(448,735);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,232,254,219,1123,297,136,851,438,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^28=b^2=1,c^4=d^2=a^14,b*a*b=a^-1,c*a*c^-1=a^15,a*d=d*a,c*b*c^-1=a^7*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽