Extensions 1→N→G→Q→1 with N=C4.12D28 and Q=C2

Direct product G=N×Q with N=C4.12D28 and Q=C2
dρLabelID
C2×C4.12D28224C2xC4.12D28448,670

Semidirect products G=N:Q with N=C4.12D28 and Q=C2
extensionφ:Q→Out NdρLabelID
C4.12D281C2 = D4.9D28φ: C2/C1C2 ⊆ Out C4.12D281124-C4.12D28:1C2448,360
C4.12D282C2 = D4.10D28φ: C2/C1C2 ⊆ Out C4.12D281124C4.12D28:2C2448,361
C4.12D283C2 = C8.20D28φ: C2/C1C2 ⊆ Out C4.12D282244-C4.12D28:3C2448,430
C4.12D284C2 = C8.24D28φ: C2/C1C2 ⊆ Out C4.12D281124C4.12D28:4C2448,432
C4.12D285C2 = M4(2).19D14φ: C2/C1C2 ⊆ Out C4.12D281128-C4.12D28:5C2448,279
C4.12D286C2 = D28.2D4φ: C2/C1C2 ⊆ Out C4.12D281128-C4.12D28:6C2448,282
C4.12D287C2 = D7×C4.10D4φ: C2/C1C2 ⊆ Out C4.12D281128-C4.12D28:7C2448,284
C4.12D288C2 = D28.7D4φ: C2/C1C2 ⊆ Out C4.12D282248-C4.12D28:8C2448,289
C4.12D289C2 = M4(2).13D14φ: C2/C1C2 ⊆ Out C4.12D281128-C4.12D28:9C2448,734
C4.12D2810C2 = D28.38D4φ: C2/C1C2 ⊆ Out C4.12D281128-C4.12D28:10C2448,735
C4.12D2811C2 = M4(2).16D14φ: C2/C1C2 ⊆ Out C4.12D282248-C4.12D28:11C2448,738
C4.12D2812C2 = D28.40D4φ: C2/C1C2 ⊆ Out C4.12D281128-C4.12D28:12C2448,739
C4.12D2813C2 = D4.3D28φ: C2/C1C2 ⊆ Out C4.12D281124C4.12D28:13C2448,675
C4.12D2814C2 = D4.5D28φ: C2/C1C2 ⊆ Out C4.12D282244-C4.12D28:14C2448,677
C4.12D2815C2 = M4(2).31D14φ: trivial image1124C4.12D28:15C2448,666


׿
×
𝔽