Copied to
clipboard

G = D28.40D4order 448 = 26·7

10th non-split extension by D28 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D28.40D4, Dic14.40D4, M4(2).17D14, C4○D4.8D14, (C7×D4).17D4, C4.107(D4×D7), (C7×Q8).17D4, C8.C223D7, C28.201(C2×D4), (C2×Q8).71D14, (C2×Dic7).6D4, D284C412C2, C22.38(D4×D7), C14.66C22≀C2, Dic7⋊Q87C2, D42Dic79C2, C28.C236C2, D4.12(C7⋊D4), C74(D4.10D4), (C2×C28).20C23, Q8.12(C7⋊D4), C4.12D2812C2, C4○D28.26C22, (Q8×C14).98C22, C2.34(C23⋊D14), D4.10D14.2C2, (C4×Dic7).59C22, C4.Dic7.29C22, (C7×M4(2)).27C22, (C2×Dic14).137C22, C4.57(C2×C7⋊D4), (C2×C14).37(C2×D4), (C7×C8.C22)⋊7C2, (C2×C4).20(C22×D7), (C7×C4○D4).18C22, SmallGroup(448,739)

Series: Derived Chief Lower central Upper central

C1C2×C28 — D28.40D4
C1C7C14C28C2×C28C4○D28D4.10D14 — D28.40D4
C7C14C2×C28 — D28.40D4
C1C2C2×C4C8.C22

Generators and relations for D28.40D4
 G = < a,b,c,d | a28=b2=1, c4=d2=a14, bab=a-1, cac-1=a15, ad=da, cbc-1=a7b, bd=db, dcd-1=a14c3 >

Subgroups: 716 in 142 conjugacy classes, 39 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, D7, C14, C14, C42, C4⋊C4, M4(2), M4(2), SD16, Q16, C2×Q8, C2×Q8, C4○D4, C4○D4, Dic7, C28, C28, D14, C2×C14, C2×C14, C4.10D4, C4≀C2, C4⋊Q8, C8.C22, C8.C22, 2- 1+4, C7⋊C8, C56, Dic14, Dic14, C4×D7, D28, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C7×Q8, D4.10D4, C4.Dic7, C4×Dic7, Dic7⋊C4, Q8⋊D7, C7⋊Q16, C7×M4(2), C7×SD16, C7×Q16, C2×Dic14, C2×Dic14, C4○D28, C4○D28, D42D7, Q8×D7, Q8×C14, C7×C4○D4, C4.12D28, D284C4, D42Dic7, C28.C23, Dic7⋊Q8, C7×C8.C22, D4.10D14, D28.40D4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, D14, C22≀C2, C7⋊D4, C22×D7, D4.10D4, D4×D7, C2×C7⋊D4, C23⋊D14, D28.40D4

Smallest permutation representation of D28.40D4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 105)(2 104)(3 103)(4 102)(5 101)(6 100)(7 99)(8 98)(9 97)(10 96)(11 95)(12 94)(13 93)(14 92)(15 91)(16 90)(17 89)(18 88)(19 87)(20 86)(21 85)(22 112)(23 111)(24 110)(25 109)(26 108)(27 107)(28 106)(29 83)(30 82)(31 81)(32 80)(33 79)(34 78)(35 77)(36 76)(37 75)(38 74)(39 73)(40 72)(41 71)(42 70)(43 69)(44 68)(45 67)(46 66)(47 65)(48 64)(49 63)(50 62)(51 61)(52 60)(53 59)(54 58)(55 57)(56 84)
(1 85 22 92 15 99 8 106)(2 100 23 107 16 86 9 93)(3 87 24 94 17 101 10 108)(4 102 25 109 18 88 11 95)(5 89 26 96 19 103 12 110)(6 104 27 111 20 90 13 97)(7 91 28 98 21 105 14 112)(29 59 50 66 43 73 36 80)(30 74 51 81 44 60 37 67)(31 61 52 68 45 75 38 82)(32 76 53 83 46 62 39 69)(33 63 54 70 47 77 40 84)(34 78 55 57 48 64 41 71)(35 65 56 72 49 79 42 58)
(1 68 15 82)(2 69 16 83)(3 70 17 84)(4 71 18 57)(5 72 19 58)(6 73 20 59)(7 74 21 60)(8 75 22 61)(9 76 23 62)(10 77 24 63)(11 78 25 64)(12 79 26 65)(13 80 27 66)(14 81 28 67)(29 104 43 90)(30 105 44 91)(31 106 45 92)(32 107 46 93)(33 108 47 94)(34 109 48 95)(35 110 49 96)(36 111 50 97)(37 112 51 98)(38 85 52 99)(39 86 53 100)(40 87 54 101)(41 88 55 102)(42 89 56 103)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,105)(2,104)(3,103)(4,102)(5,101)(6,100)(7,99)(8,98)(9,97)(10,96)(11,95)(12,94)(13,93)(14,92)(15,91)(16,90)(17,89)(18,88)(19,87)(20,86)(21,85)(22,112)(23,111)(24,110)(25,109)(26,108)(27,107)(28,106)(29,83)(30,82)(31,81)(32,80)(33,79)(34,78)(35,77)(36,76)(37,75)(38,74)(39,73)(40,72)(41,71)(42,70)(43,69)(44,68)(45,67)(46,66)(47,65)(48,64)(49,63)(50,62)(51,61)(52,60)(53,59)(54,58)(55,57)(56,84), (1,85,22,92,15,99,8,106)(2,100,23,107,16,86,9,93)(3,87,24,94,17,101,10,108)(4,102,25,109,18,88,11,95)(5,89,26,96,19,103,12,110)(6,104,27,111,20,90,13,97)(7,91,28,98,21,105,14,112)(29,59,50,66,43,73,36,80)(30,74,51,81,44,60,37,67)(31,61,52,68,45,75,38,82)(32,76,53,83,46,62,39,69)(33,63,54,70,47,77,40,84)(34,78,55,57,48,64,41,71)(35,65,56,72,49,79,42,58), (1,68,15,82)(2,69,16,83)(3,70,17,84)(4,71,18,57)(5,72,19,58)(6,73,20,59)(7,74,21,60)(8,75,22,61)(9,76,23,62)(10,77,24,63)(11,78,25,64)(12,79,26,65)(13,80,27,66)(14,81,28,67)(29,104,43,90)(30,105,44,91)(31,106,45,92)(32,107,46,93)(33,108,47,94)(34,109,48,95)(35,110,49,96)(36,111,50,97)(37,112,51,98)(38,85,52,99)(39,86,53,100)(40,87,54,101)(41,88,55,102)(42,89,56,103)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,105)(2,104)(3,103)(4,102)(5,101)(6,100)(7,99)(8,98)(9,97)(10,96)(11,95)(12,94)(13,93)(14,92)(15,91)(16,90)(17,89)(18,88)(19,87)(20,86)(21,85)(22,112)(23,111)(24,110)(25,109)(26,108)(27,107)(28,106)(29,83)(30,82)(31,81)(32,80)(33,79)(34,78)(35,77)(36,76)(37,75)(38,74)(39,73)(40,72)(41,71)(42,70)(43,69)(44,68)(45,67)(46,66)(47,65)(48,64)(49,63)(50,62)(51,61)(52,60)(53,59)(54,58)(55,57)(56,84), (1,85,22,92,15,99,8,106)(2,100,23,107,16,86,9,93)(3,87,24,94,17,101,10,108)(4,102,25,109,18,88,11,95)(5,89,26,96,19,103,12,110)(6,104,27,111,20,90,13,97)(7,91,28,98,21,105,14,112)(29,59,50,66,43,73,36,80)(30,74,51,81,44,60,37,67)(31,61,52,68,45,75,38,82)(32,76,53,83,46,62,39,69)(33,63,54,70,47,77,40,84)(34,78,55,57,48,64,41,71)(35,65,56,72,49,79,42,58), (1,68,15,82)(2,69,16,83)(3,70,17,84)(4,71,18,57)(5,72,19,58)(6,73,20,59)(7,74,21,60)(8,75,22,61)(9,76,23,62)(10,77,24,63)(11,78,25,64)(12,79,26,65)(13,80,27,66)(14,81,28,67)(29,104,43,90)(30,105,44,91)(31,106,45,92)(32,107,46,93)(33,108,47,94)(34,109,48,95)(35,110,49,96)(36,111,50,97)(37,112,51,98)(38,85,52,99)(39,86,53,100)(40,87,54,101)(41,88,55,102)(42,89,56,103) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,105),(2,104),(3,103),(4,102),(5,101),(6,100),(7,99),(8,98),(9,97),(10,96),(11,95),(12,94),(13,93),(14,92),(15,91),(16,90),(17,89),(18,88),(19,87),(20,86),(21,85),(22,112),(23,111),(24,110),(25,109),(26,108),(27,107),(28,106),(29,83),(30,82),(31,81),(32,80),(33,79),(34,78),(35,77),(36,76),(37,75),(38,74),(39,73),(40,72),(41,71),(42,70),(43,69),(44,68),(45,67),(46,66),(47,65),(48,64),(49,63),(50,62),(51,61),(52,60),(53,59),(54,58),(55,57),(56,84)], [(1,85,22,92,15,99,8,106),(2,100,23,107,16,86,9,93),(3,87,24,94,17,101,10,108),(4,102,25,109,18,88,11,95),(5,89,26,96,19,103,12,110),(6,104,27,111,20,90,13,97),(7,91,28,98,21,105,14,112),(29,59,50,66,43,73,36,80),(30,74,51,81,44,60,37,67),(31,61,52,68,45,75,38,82),(32,76,53,83,46,62,39,69),(33,63,54,70,47,77,40,84),(34,78,55,57,48,64,41,71),(35,65,56,72,49,79,42,58)], [(1,68,15,82),(2,69,16,83),(3,70,17,84),(4,71,18,57),(5,72,19,58),(6,73,20,59),(7,74,21,60),(8,75,22,61),(9,76,23,62),(10,77,24,63),(11,78,25,64),(12,79,26,65),(13,80,27,66),(14,81,28,67),(29,104,43,90),(30,105,44,91),(31,106,45,92),(32,107,46,93),(33,108,47,94),(34,109,48,95),(35,110,49,96),(36,111,50,97),(37,112,51,98),(38,85,52,99),(39,86,53,100),(40,87,54,101),(41,88,55,102),(42,89,56,103)]])

49 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E···4I7A7B7C8A8B14A14B14C14D14E14F14G14H14I28A···28F28G···28O56A···56F
order1222244444···47778814141414141414141428···2828···2856···56
size112428224828···282228562224448884···48···88···8

49 irreducible representations

dim11111111222222222224448
type+++++++++++++++++-++-
imageC1C2C2C2C2C2C2C2D4D4D4D4D4D7D14D14D14C7⋊D4C7⋊D4D4.10D4D4×D7D4×D7D28.40D4
kernelD28.40D4C4.12D28D284C4D42Dic7C28.C23Dic7⋊Q8C7×C8.C22D4.10D14Dic14D28C2×Dic7C7×D4C7×Q8C8.C22M4(2)C2×Q8C4○D4D4Q8C7C4C22C1
# reps11111111112113333662333

Matrix representation of D28.40D4 in GL6(𝔽113)

85970000
040000
001124100
0022100
002948122
00657041112
,
85970000
56280000
0010785273
0090364017
00846511291
00641610168
,
1121120000
010000
006442659
0084575441
001271120
00404649106
,
11200000
01120000
0010690720
00011211191
0015106684
0050306655

G:=sub<GL(6,GF(113))| [85,0,0,0,0,0,97,4,0,0,0,0,0,0,112,22,29,65,0,0,41,1,48,70,0,0,0,0,1,41,0,0,0,0,22,112],[85,56,0,0,0,0,97,28,0,0,0,0,0,0,10,90,84,64,0,0,78,36,65,16,0,0,52,40,112,101,0,0,73,17,91,68],[112,0,0,0,0,0,112,1,0,0,0,0,0,0,64,84,12,40,0,0,42,57,7,46,0,0,6,54,112,49,0,0,59,41,0,106],[112,0,0,0,0,0,0,112,0,0,0,0,0,0,106,0,15,50,0,0,90,112,10,30,0,0,72,111,66,66,0,0,0,91,84,55] >;

D28.40D4 in GAP, Magma, Sage, TeX

D_{28}._{40}D_4
% in TeX

G:=Group("D28.40D4");
// GroupNames label

G:=SmallGroup(448,739);
// by ID

G=gap.SmallGroup(448,739);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,232,254,219,184,1123,297,136,851,438,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^28=b^2=1,c^4=d^2=a^14,b*a*b=a^-1,c*a*c^-1=a^15,a*d=d*a,c*b*c^-1=a^7*b,b*d=d*b,d*c*d^-1=a^14*c^3>;
// generators/relations

׿
×
𝔽