Copied to
clipboard

G = C4:C4:28D14order 448 = 26·7

11st semidirect product of C4:C4 and D14 acting via D14/D7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4:C4:28D14, D14:5(C4oD4), C22:C4:31D14, (C2xDic7):21D4, D28:C4:32C2, C23:D14:16C2, D14:D4:31C2, C22:D28:20C2, C22.45(D4xD7), D14:C4:27C22, D14:Q8:29C2, (C2xD4).165D14, (C2xC28).73C23, Dic7.49(C2xD4), C14.85(C22xD4), Dic7:4D4:20C2, (C2xC14).200C24, Dic7:C4:23C22, C7:6(C22.19C24), (C4xDic7):32C22, (C22xC4).322D14, C22.D4:18D7, C23.27(C22xD7), (C2xDic14):28C22, (D4xC14).138C22, (C2xD28).156C22, (C22xC14).35C23, C22.221(C23xD7), C23.D7.43C22, C23.23D14:21C2, C23.11D14:13C2, (C22xC28).368C22, (C2xDic7).104C23, (C22xDic7):25C22, (C23xD7).110C22, (C22xD7).208C23, C2.58(C2xD4xD7), C2.62(D7xC4oD4), (C2xC4xD7):22C22, (D7xC22xC4):24C2, (C7xC4:C4):26C22, (C2xC14).61(C2xD4), (C2xD4:2D7):17C2, C14.174(C2xC4oD4), (C2xC7:D4):19C22, (C2xC4).63(C22xD7), (C7xC22:C4):22C22, (C7xC22.D4):8C2, SmallGroup(448,1109)

Series: Derived Chief Lower central Upper central

C1C2xC14 — C4:C4:28D14
C1C7C14C2xC14C22xD7C23xD7D7xC22xC4 — C4:C4:28D14
C7C2xC14 — C4:C4:28D14
C1C22C22.D4

Generators and relations for C4:C4:28D14
 G = < a,b,c,d | a4=b4=c14=d2=1, bab-1=dad=a-1, cac-1=ab2, cbc-1=b-1, dbd=a2b, dcd=c-1 >

Subgroups: 1644 in 330 conjugacy classes, 107 normal (39 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, D7, C14, C14, C14, C42, C22:C4, C22:C4, C22:C4, C4:C4, C4:C4, C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C4oD4, C24, Dic7, Dic7, C28, D14, D14, C2xC14, C2xC14, C2xC14, C42:C2, C4xD4, C22wrC2, C4:D4, C22:Q8, C22.D4, C22.D4, C23xC4, C2xC4oD4, Dic14, C4xD7, D28, C2xDic7, C2xDic7, C2xDic7, C7:D4, C2xC28, C2xC28, C2xC28, C7xD4, C22xD7, C22xD7, C22xD7, C22xC14, C22.19C24, C4xDic7, Dic7:C4, D14:C4, C23.D7, C7xC22:C4, C7xC22:C4, C7xC4:C4, C2xDic14, C2xC4xD7, C2xC4xD7, C2xC4xD7, C2xD28, D4:2D7, C22xDic7, C2xC7:D4, C2xC7:D4, C22xC28, D4xC14, C23xD7, C23.11D14, Dic7:4D4, C22:D28, D14:D4, D28:C4, D14:Q8, C23.23D14, C23:D14, C7xC22.D4, D7xC22xC4, C2xD4:2D7, C4:C4:28D14
Quotients: C1, C2, C22, D4, C23, D7, C2xD4, C4oD4, C24, D14, C22xD4, C2xC4oD4, C22xD7, C22.19C24, D4xD7, C23xD7, C2xD4xD7, D7xC4oD4, C4:C4:28D14

Smallest permutation representation of C4:C4:28D14
On 112 points
Generators in S112
(1 100 22 82)(2 108 23 76)(3 102 24 84)(4 110 25 78)(5 104 26 72)(6 112 27 80)(7 106 28 74)(8 87 46 68)(9 95 47 62)(10 89 48 70)(11 97 49 64)(12 91 43 58)(13 85 44 66)(14 93 45 60)(15 111 35 79)(16 105 29 73)(17 99 30 81)(18 107 31 75)(19 101 32 83)(20 109 33 77)(21 103 34 71)(36 94 53 61)(37 88 54 69)(38 96 55 63)(39 90 56 57)(40 98 50 65)(41 92 51 59)(42 86 52 67)
(1 88 18 95)(2 96 19 89)(3 90 20 97)(4 98 21 91)(5 92 15 85)(6 86 16 93)(7 94 17 87)(8 106 36 99)(9 100 37 107)(10 108 38 101)(11 102 39 109)(12 110 40 103)(13 104 41 111)(14 112 42 105)(22 69 31 62)(23 63 32 70)(24 57 33 64)(25 65 34 58)(26 59 35 66)(27 67 29 60)(28 61 30 68)(43 78 50 71)(44 72 51 79)(45 80 52 73)(46 74 53 81)(47 82 54 75)(48 76 55 83)(49 84 56 77)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 30)(2 29)(3 35)(4 34)(5 33)(6 32)(7 31)(8 54)(9 53)(10 52)(11 51)(12 50)(13 56)(14 55)(15 24)(16 23)(17 22)(18 28)(19 27)(20 26)(21 25)(36 47)(37 46)(38 45)(39 44)(40 43)(41 49)(42 48)(57 66)(58 65)(59 64)(60 63)(61 62)(67 70)(68 69)(71 78)(72 77)(73 76)(74 75)(79 84)(80 83)(81 82)(85 90)(86 89)(87 88)(91 98)(92 97)(93 96)(94 95)(99 100)(101 112)(102 111)(103 110)(104 109)(105 108)(106 107)

G:=sub<Sym(112)| (1,100,22,82)(2,108,23,76)(3,102,24,84)(4,110,25,78)(5,104,26,72)(6,112,27,80)(7,106,28,74)(8,87,46,68)(9,95,47,62)(10,89,48,70)(11,97,49,64)(12,91,43,58)(13,85,44,66)(14,93,45,60)(15,111,35,79)(16,105,29,73)(17,99,30,81)(18,107,31,75)(19,101,32,83)(20,109,33,77)(21,103,34,71)(36,94,53,61)(37,88,54,69)(38,96,55,63)(39,90,56,57)(40,98,50,65)(41,92,51,59)(42,86,52,67), (1,88,18,95)(2,96,19,89)(3,90,20,97)(4,98,21,91)(5,92,15,85)(6,86,16,93)(7,94,17,87)(8,106,36,99)(9,100,37,107)(10,108,38,101)(11,102,39,109)(12,110,40,103)(13,104,41,111)(14,112,42,105)(22,69,31,62)(23,63,32,70)(24,57,33,64)(25,65,34,58)(26,59,35,66)(27,67,29,60)(28,61,30,68)(43,78,50,71)(44,72,51,79)(45,80,52,73)(46,74,53,81)(47,82,54,75)(48,76,55,83)(49,84,56,77), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,30)(2,29)(3,35)(4,34)(5,33)(6,32)(7,31)(8,54)(9,53)(10,52)(11,51)(12,50)(13,56)(14,55)(15,24)(16,23)(17,22)(18,28)(19,27)(20,26)(21,25)(36,47)(37,46)(38,45)(39,44)(40,43)(41,49)(42,48)(57,66)(58,65)(59,64)(60,63)(61,62)(67,70)(68,69)(71,78)(72,77)(73,76)(74,75)(79,84)(80,83)(81,82)(85,90)(86,89)(87,88)(91,98)(92,97)(93,96)(94,95)(99,100)(101,112)(102,111)(103,110)(104,109)(105,108)(106,107)>;

G:=Group( (1,100,22,82)(2,108,23,76)(3,102,24,84)(4,110,25,78)(5,104,26,72)(6,112,27,80)(7,106,28,74)(8,87,46,68)(9,95,47,62)(10,89,48,70)(11,97,49,64)(12,91,43,58)(13,85,44,66)(14,93,45,60)(15,111,35,79)(16,105,29,73)(17,99,30,81)(18,107,31,75)(19,101,32,83)(20,109,33,77)(21,103,34,71)(36,94,53,61)(37,88,54,69)(38,96,55,63)(39,90,56,57)(40,98,50,65)(41,92,51,59)(42,86,52,67), (1,88,18,95)(2,96,19,89)(3,90,20,97)(4,98,21,91)(5,92,15,85)(6,86,16,93)(7,94,17,87)(8,106,36,99)(9,100,37,107)(10,108,38,101)(11,102,39,109)(12,110,40,103)(13,104,41,111)(14,112,42,105)(22,69,31,62)(23,63,32,70)(24,57,33,64)(25,65,34,58)(26,59,35,66)(27,67,29,60)(28,61,30,68)(43,78,50,71)(44,72,51,79)(45,80,52,73)(46,74,53,81)(47,82,54,75)(48,76,55,83)(49,84,56,77), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,30)(2,29)(3,35)(4,34)(5,33)(6,32)(7,31)(8,54)(9,53)(10,52)(11,51)(12,50)(13,56)(14,55)(15,24)(16,23)(17,22)(18,28)(19,27)(20,26)(21,25)(36,47)(37,46)(38,45)(39,44)(40,43)(41,49)(42,48)(57,66)(58,65)(59,64)(60,63)(61,62)(67,70)(68,69)(71,78)(72,77)(73,76)(74,75)(79,84)(80,83)(81,82)(85,90)(86,89)(87,88)(91,98)(92,97)(93,96)(94,95)(99,100)(101,112)(102,111)(103,110)(104,109)(105,108)(106,107) );

G=PermutationGroup([[(1,100,22,82),(2,108,23,76),(3,102,24,84),(4,110,25,78),(5,104,26,72),(6,112,27,80),(7,106,28,74),(8,87,46,68),(9,95,47,62),(10,89,48,70),(11,97,49,64),(12,91,43,58),(13,85,44,66),(14,93,45,60),(15,111,35,79),(16,105,29,73),(17,99,30,81),(18,107,31,75),(19,101,32,83),(20,109,33,77),(21,103,34,71),(36,94,53,61),(37,88,54,69),(38,96,55,63),(39,90,56,57),(40,98,50,65),(41,92,51,59),(42,86,52,67)], [(1,88,18,95),(2,96,19,89),(3,90,20,97),(4,98,21,91),(5,92,15,85),(6,86,16,93),(7,94,17,87),(8,106,36,99),(9,100,37,107),(10,108,38,101),(11,102,39,109),(12,110,40,103),(13,104,41,111),(14,112,42,105),(22,69,31,62),(23,63,32,70),(24,57,33,64),(25,65,34,58),(26,59,35,66),(27,67,29,60),(28,61,30,68),(43,78,50,71),(44,72,51,79),(45,80,52,73),(46,74,53,81),(47,82,54,75),(48,76,55,83),(49,84,56,77)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,30),(2,29),(3,35),(4,34),(5,33),(6,32),(7,31),(8,54),(9,53),(10,52),(11,51),(12,50),(13,56),(14,55),(15,24),(16,23),(17,22),(18,28),(19,27),(20,26),(21,25),(36,47),(37,46),(38,45),(39,44),(40,43),(41,49),(42,48),(57,66),(58,65),(59,64),(60,63),(61,62),(67,70),(68,69),(71,78),(72,77),(73,76),(74,75),(79,84),(80,83),(81,82),(85,90),(86,89),(87,88),(91,98),(92,97),(93,96),(94,95),(99,100),(101,112),(102,111),(103,110),(104,109),(105,108),(106,107)]])

70 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P7A7B7C14A···14I14J···14O14P14Q14R28A···28L28M···28U
order122222222222444444444444444477714···1414···1414141428···2828···28
size111122414141414282222444777714142828282222···24···48884···48···8

70 irreducible representations

dim111111111111222222244
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D7C4oD4D14D14D14D14D4xD7D7xC4oD4
kernelC4:C4:28D14C23.11D14Dic7:4D4C22:D28D14:D4D28:C4D14:Q8C23.23D14C23:D14C7xC22.D4D7xC22xC4C2xD4:2D7C2xDic7C22.D4D14C22:C4C4:C4C22xC4C2xD4C22C2
# reps1121222111114389633612

Matrix representation of C4:C4:28D14 in GL6(F29)

12170000
0170000
001000
000100
000017
0000828
,
2810000
2710000
001000
000100
000017
0000028
,
100000
2280000
0031000
0026000
000010
000001
,
100000
2280000
001000
00202800
0000280
0000211

G:=sub<GL(6,GF(29))| [12,0,0,0,0,0,17,17,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,8,0,0,0,0,7,28],[28,27,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,7,28],[1,2,0,0,0,0,0,28,0,0,0,0,0,0,3,26,0,0,0,0,10,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,2,0,0,0,0,0,28,0,0,0,0,0,0,1,20,0,0,0,0,0,28,0,0,0,0,0,0,28,21,0,0,0,0,0,1] >;

C4:C4:28D14 in GAP, Magma, Sage, TeX

C_4\rtimes C_4\rtimes_{28}D_{14}
% in TeX

G:=Group("C4:C4:28D14");
// GroupNames label

G:=SmallGroup(448,1109);
// by ID

G=gap.SmallGroup(448,1109);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,100,1123,346,297,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,b*a*b^-1=d*a*d=a^-1,c*a*c^-1=a*b^2,c*b*c^-1=b^-1,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<