metacyclic, supersoluble, monomial, Z-group
Aliases: C13⋊C36, C3.F13, C39.C12, D13.C18, C13⋊C9⋊C4, C13⋊C4⋊C9, C13⋊C18.C2, (C3×D13).2C6, (C3×C13⋊C4).C3, SmallGroup(468,7)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C13 — C39 — C3×D13 — C13⋊C18 — C13⋊C36 |
C13 — C13⋊C36 |
Generators and relations for C13⋊C36
G = < a,b | a13=b36=1, bab-1=a6 >
(1 94 58 67 35 85 44 26 103 17 49 76 112)(2 45 113 86 77 36 50 68 18 59 104 95 27)(3 51 28 37 96 78 105 87 60 114 19 10 69)(4 106 70 79 11 97 20 38 115 29 61 52 88)(5 21 89 98 53 12 62 80 30 71 116 107 39)(6 63 40 13 108 54 117 99 72 90 31 22 81)(7 82 46 55 23 109 32 14 91 41 73 64 100)(8 33 101 110 65 24 74 56 42 47 92 83 15)(9 75 16 25 84 66 93 111 48 102 43 34 57)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117)
G:=sub<Sym(117)| (1,94,58,67,35,85,44,26,103,17,49,76,112)(2,45,113,86,77,36,50,68,18,59,104,95,27)(3,51,28,37,96,78,105,87,60,114,19,10,69)(4,106,70,79,11,97,20,38,115,29,61,52,88)(5,21,89,98,53,12,62,80,30,71,116,107,39)(6,63,40,13,108,54,117,99,72,90,31,22,81)(7,82,46,55,23,109,32,14,91,41,73,64,100)(8,33,101,110,65,24,74,56,42,47,92,83,15)(9,75,16,25,84,66,93,111,48,102,43,34,57), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117)>;
G:=Group( (1,94,58,67,35,85,44,26,103,17,49,76,112)(2,45,113,86,77,36,50,68,18,59,104,95,27)(3,51,28,37,96,78,105,87,60,114,19,10,69)(4,106,70,79,11,97,20,38,115,29,61,52,88)(5,21,89,98,53,12,62,80,30,71,116,107,39)(6,63,40,13,108,54,117,99,72,90,31,22,81)(7,82,46,55,23,109,32,14,91,41,73,64,100)(8,33,101,110,65,24,74,56,42,47,92,83,15)(9,75,16,25,84,66,93,111,48,102,43,34,57), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117) );
G=PermutationGroup([[(1,94,58,67,35,85,44,26,103,17,49,76,112),(2,45,113,86,77,36,50,68,18,59,104,95,27),(3,51,28,37,96,78,105,87,60,114,19,10,69),(4,106,70,79,11,97,20,38,115,29,61,52,88),(5,21,89,98,53,12,62,80,30,71,116,107,39),(6,63,40,13,108,54,117,99,72,90,31,22,81),(7,82,46,55,23,109,32,14,91,41,73,64,100),(8,33,101,110,65,24,74,56,42,47,92,83,15),(9,75,16,25,84,66,93,111,48,102,43,34,57)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117)]])
39 conjugacy classes
class | 1 | 2 | 3A | 3B | 4A | 4B | 6A | 6B | 9A | ··· | 9F | 12A | 12B | 12C | 12D | 13 | 18A | ··· | 18F | 36A | ··· | 36L | 39A | 39B |
order | 1 | 2 | 3 | 3 | 4 | 4 | 6 | 6 | 9 | ··· | 9 | 12 | 12 | 12 | 12 | 13 | 18 | ··· | 18 | 36 | ··· | 36 | 39 | 39 |
size | 1 | 13 | 1 | 1 | 13 | 13 | 13 | 13 | 13 | ··· | 13 | 13 | 13 | 13 | 13 | 12 | 13 | ··· | 13 | 13 | ··· | 13 | 12 | 12 |
39 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 12 | 12 |
type | + | + | + | ||||||||
image | C1 | C2 | C3 | C4 | C6 | C9 | C12 | C18 | C36 | F13 | C13⋊C36 |
kernel | C13⋊C36 | C13⋊C18 | C3×C13⋊C4 | C13⋊C9 | C3×D13 | C13⋊C4 | C39 | D13 | C13 | C3 | C1 |
# reps | 1 | 1 | 2 | 2 | 2 | 6 | 4 | 6 | 12 | 1 | 2 |
Matrix representation of C13⋊C36 ►in GL12(𝔽937)
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
936 | 936 | 936 | 936 | 936 | 936 | 936 | 936 | 936 | 936 | 936 | 936 |
846 | 0 | 311 | 311 | 846 | 637 | 846 | 311 | 311 | 0 | 846 | 0 |
402 | 402 | 91 | 0 | 91 | 91 | 0 | 91 | 402 | 402 | 0 | 728 |
91 | 402 | 402 | 0 | 728 | 0 | 402 | 402 | 91 | 0 | 91 | 91 |
0 | 626 | 535 | 626 | 626 | 535 | 626 | 0 | 0 | 535 | 326 | 535 |
311 | 311 | 846 | 637 | 846 | 311 | 311 | 0 | 846 | 0 | 0 | 846 |
626 | 535 | 626 | 626 | 535 | 626 | 0 | 0 | 535 | 326 | 535 | 0 |
0 | 535 | 326 | 535 | 0 | 0 | 626 | 535 | 626 | 626 | 535 | 626 |
846 | 0 | 0 | 846 | 0 | 311 | 311 | 846 | 637 | 846 | 311 | 311 |
535 | 326 | 535 | 0 | 0 | 626 | 535 | 626 | 626 | 535 | 626 | 0 |
91 | 91 | 0 | 91 | 402 | 402 | 0 | 728 | 0 | 402 | 402 | 91 |
728 | 0 | 402 | 402 | 91 | 0 | 91 | 91 | 0 | 91 | 402 | 402 |
0 | 846 | 0 | 311 | 311 | 846 | 637 | 846 | 311 | 311 | 0 | 846 |
G:=sub<GL(12,GF(937))| [0,0,0,0,0,0,0,0,0,0,0,936,1,0,0,0,0,0,0,0,0,0,0,936,0,1,0,0,0,0,0,0,0,0,0,936,0,0,1,0,0,0,0,0,0,0,0,936,0,0,0,1,0,0,0,0,0,0,0,936,0,0,0,0,1,0,0,0,0,0,0,936,0,0,0,0,0,1,0,0,0,0,0,936,0,0,0,0,0,0,1,0,0,0,0,936,0,0,0,0,0,0,0,1,0,0,0,936,0,0,0,0,0,0,0,0,1,0,0,936,0,0,0,0,0,0,0,0,0,1,0,936,0,0,0,0,0,0,0,0,0,0,1,936],[846,402,91,0,311,626,0,846,535,91,728,0,0,402,402,626,311,535,535,0,326,91,0,846,311,91,402,535,846,626,326,0,535,0,402,0,311,0,0,626,637,626,535,846,0,91,402,311,846,91,728,626,846,535,0,0,0,402,91,311,637,91,0,535,311,626,0,311,626,402,0,846,846,0,402,626,311,0,626,311,535,0,91,637,311,91,402,0,0,0,535,846,626,728,91,846,311,402,91,0,846,535,626,637,626,0,0,311,0,402,0,535,0,326,626,846,535,402,91,311,846,0,91,326,0,535,535,311,626,402,402,0,0,728,91,535,846,0,626,311,0,91,402,846] >;
C13⋊C36 in GAP, Magma, Sage, TeX
C_{13}\rtimes C_{36}
% in TeX
G:=Group("C13:C36");
// GroupNames label
G:=SmallGroup(468,7);
// by ID
G=gap.SmallGroup(468,7);
# by ID
G:=PCGroup([5,-2,-3,-2,-3,-13,30,66,7204,1359,1814]);
// Polycyclic
G:=Group<a,b|a^13=b^36=1,b*a*b^-1=a^6>;
// generators/relations
Export