direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: C3×C13⋊C4, C39⋊2C4, C13⋊3C12, D13.2C6, (C3×D13).2C2, SmallGroup(156,9)
Series: Derived ►Chief ►Lower central ►Upper central
C13 — C3×C13⋊C4 |
Generators and relations for C3×C13⋊C4
G = < a,b,c | a3=b13=c4=1, ab=ba, ac=ca, cbc-1=b5 >
Character table of C3×C13⋊C4
class | 1 | 2 | 3A | 3B | 4A | 4B | 6A | 6B | 12A | 12B | 12C | 12D | 13A | 13B | 13C | 39A | 39B | 39C | 39D | 39E | 39F | |
size | 1 | 13 | 1 | 1 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ4 | 1 | 1 | ζ32 | ζ3 | -1 | -1 | ζ32 | ζ3 | ζ6 | ζ65 | ζ65 | ζ6 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | linear of order 6 |
ρ5 | 1 | 1 | ζ3 | ζ32 | -1 | -1 | ζ3 | ζ32 | ζ65 | ζ6 | ζ6 | ζ65 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | linear of order 6 |
ρ6 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ7 | 1 | -1 | 1 | 1 | -i | i | -1 | -1 | -i | i | -i | i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | -1 | 1 | 1 | i | -i | -1 | -1 | i | -i | i | -i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ9 | 1 | -1 | ζ32 | ζ3 | -i | i | ζ6 | ζ65 | ζ43ζ32 | ζ4ζ3 | ζ43ζ3 | ζ4ζ32 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | linear of order 12 |
ρ10 | 1 | -1 | ζ3 | ζ32 | -i | i | ζ65 | ζ6 | ζ43ζ3 | ζ4ζ32 | ζ43ζ32 | ζ4ζ3 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | linear of order 12 |
ρ11 | 1 | -1 | ζ32 | ζ3 | i | -i | ζ6 | ζ65 | ζ4ζ32 | ζ43ζ3 | ζ4ζ3 | ζ43ζ32 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | linear of order 12 |
ρ12 | 1 | -1 | ζ3 | ζ32 | i | -i | ζ65 | ζ6 | ζ4ζ3 | ζ43ζ32 | ζ4ζ32 | ζ43ζ3 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | linear of order 12 |
ρ13 | 4 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1311+ζ1310+ζ133+ζ132 | ζ1312+ζ138+ζ135+ζ13 | ζ139+ζ137+ζ136+ζ134 | ζ1311+ζ1310+ζ133+ζ132 | ζ139+ζ137+ζ136+ζ134 | ζ1311+ζ1310+ζ133+ζ132 | ζ139+ζ137+ζ136+ζ134 | ζ1312+ζ138+ζ135+ζ13 | ζ1312+ζ138+ζ135+ζ13 | orthogonal lifted from C13⋊C4 |
ρ14 | 4 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ139+ζ137+ζ136+ζ134 | ζ1311+ζ1310+ζ133+ζ132 | ζ1312+ζ138+ζ135+ζ13 | ζ139+ζ137+ζ136+ζ134 | ζ1312+ζ138+ζ135+ζ13 | ζ139+ζ137+ζ136+ζ134 | ζ1312+ζ138+ζ135+ζ13 | ζ1311+ζ1310+ζ133+ζ132 | ζ1311+ζ1310+ζ133+ζ132 | orthogonal lifted from C13⋊C4 |
ρ15 | 4 | 0 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1312+ζ138+ζ135+ζ13 | ζ139+ζ137+ζ136+ζ134 | ζ1311+ζ1310+ζ133+ζ132 | ζ1312+ζ138+ζ135+ζ13 | ζ1311+ζ1310+ζ133+ζ132 | ζ1312+ζ138+ζ135+ζ13 | ζ1311+ζ1310+ζ133+ζ132 | ζ139+ζ137+ζ136+ζ134 | ζ139+ζ137+ζ136+ζ134 | orthogonal lifted from C13⋊C4 |
ρ16 | 4 | 0 | -2-2√-3 | -2+2√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1311+ζ1310+ζ133+ζ132 | ζ1312+ζ138+ζ135+ζ13 | ζ139+ζ137+ζ136+ζ134 | ζ3ζ1311+ζ3ζ1310+ζ3ζ133+ζ3ζ132 | ζ3ζ139+ζ3ζ137+ζ3ζ136+ζ3ζ134 | ζ32ζ1311+ζ32ζ1310+ζ32ζ133+ζ32ζ132 | ζ32ζ139+ζ32ζ137+ζ32ζ136+ζ32ζ134 | ζ32ζ1312+ζ32ζ138+ζ32ζ135+ζ32ζ13 | ζ3ζ1312+ζ3ζ138+ζ3ζ135+ζ3ζ13 | complex faithful |
ρ17 | 4 | 0 | -2-2√-3 | -2+2√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ139+ζ137+ζ136+ζ134 | ζ1311+ζ1310+ζ133+ζ132 | ζ1312+ζ138+ζ135+ζ13 | ζ3ζ139+ζ3ζ137+ζ3ζ136+ζ3ζ134 | ζ3ζ1312+ζ3ζ138+ζ3ζ135+ζ3ζ13 | ζ32ζ139+ζ32ζ137+ζ32ζ136+ζ32ζ134 | ζ32ζ1312+ζ32ζ138+ζ32ζ135+ζ32ζ13 | ζ32ζ1311+ζ32ζ1310+ζ32ζ133+ζ32ζ132 | ζ3ζ1311+ζ3ζ1310+ζ3ζ133+ζ3ζ132 | complex faithful |
ρ18 | 4 | 0 | -2+2√-3 | -2-2√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1312+ζ138+ζ135+ζ13 | ζ139+ζ137+ζ136+ζ134 | ζ1311+ζ1310+ζ133+ζ132 | ζ32ζ1312+ζ32ζ138+ζ32ζ135+ζ32ζ13 | ζ32ζ1311+ζ32ζ1310+ζ32ζ133+ζ32ζ132 | ζ3ζ1312+ζ3ζ138+ζ3ζ135+ζ3ζ13 | ζ3ζ1311+ζ3ζ1310+ζ3ζ133+ζ3ζ132 | ζ3ζ139+ζ3ζ137+ζ3ζ136+ζ3ζ134 | ζ32ζ139+ζ32ζ137+ζ32ζ136+ζ32ζ134 | complex faithful |
ρ19 | 4 | 0 | -2+2√-3 | -2-2√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ139+ζ137+ζ136+ζ134 | ζ1311+ζ1310+ζ133+ζ132 | ζ1312+ζ138+ζ135+ζ13 | ζ32ζ139+ζ32ζ137+ζ32ζ136+ζ32ζ134 | ζ32ζ1312+ζ32ζ138+ζ32ζ135+ζ32ζ13 | ζ3ζ139+ζ3ζ137+ζ3ζ136+ζ3ζ134 | ζ3ζ1312+ζ3ζ138+ζ3ζ135+ζ3ζ13 | ζ3ζ1311+ζ3ζ1310+ζ3ζ133+ζ3ζ132 | ζ32ζ1311+ζ32ζ1310+ζ32ζ133+ζ32ζ132 | complex faithful |
ρ20 | 4 | 0 | -2+2√-3 | -2-2√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1311+ζ1310+ζ133+ζ132 | ζ1312+ζ138+ζ135+ζ13 | ζ139+ζ137+ζ136+ζ134 | ζ32ζ1311+ζ32ζ1310+ζ32ζ133+ζ32ζ132 | ζ32ζ139+ζ32ζ137+ζ32ζ136+ζ32ζ134 | ζ3ζ1311+ζ3ζ1310+ζ3ζ133+ζ3ζ132 | ζ3ζ139+ζ3ζ137+ζ3ζ136+ζ3ζ134 | ζ3ζ1312+ζ3ζ138+ζ3ζ135+ζ3ζ13 | ζ32ζ1312+ζ32ζ138+ζ32ζ135+ζ32ζ13 | complex faithful |
ρ21 | 4 | 0 | -2-2√-3 | -2+2√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1312+ζ138+ζ135+ζ13 | ζ139+ζ137+ζ136+ζ134 | ζ1311+ζ1310+ζ133+ζ132 | ζ3ζ1312+ζ3ζ138+ζ3ζ135+ζ3ζ13 | ζ3ζ1311+ζ3ζ1310+ζ3ζ133+ζ3ζ132 | ζ32ζ1312+ζ32ζ138+ζ32ζ135+ζ32ζ13 | ζ32ζ1311+ζ32ζ1310+ζ32ζ133+ζ32ζ132 | ζ32ζ139+ζ32ζ137+ζ32ζ136+ζ32ζ134 | ζ3ζ139+ζ3ζ137+ζ3ζ136+ζ3ζ134 | complex faithful |
(1 27 14)(2 28 15)(3 29 16)(4 30 17)(5 31 18)(6 32 19)(7 33 20)(8 34 21)(9 35 22)(10 36 23)(11 37 24)(12 38 25)(13 39 26)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)
(2 9 13 6)(3 4 12 11)(5 7 10 8)(15 22 26 19)(16 17 25 24)(18 20 23 21)(28 35 39 32)(29 30 38 37)(31 33 36 34)
G:=sub<Sym(39)| (1,27,14)(2,28,15)(3,29,16)(4,30,17)(5,31,18)(6,32,19)(7,33,20)(8,34,21)(9,35,22)(10,36,23)(11,37,24)(12,38,25)(13,39,26), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39), (2,9,13,6)(3,4,12,11)(5,7,10,8)(15,22,26,19)(16,17,25,24)(18,20,23,21)(28,35,39,32)(29,30,38,37)(31,33,36,34)>;
G:=Group( (1,27,14)(2,28,15)(3,29,16)(4,30,17)(5,31,18)(6,32,19)(7,33,20)(8,34,21)(9,35,22)(10,36,23)(11,37,24)(12,38,25)(13,39,26), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39), (2,9,13,6)(3,4,12,11)(5,7,10,8)(15,22,26,19)(16,17,25,24)(18,20,23,21)(28,35,39,32)(29,30,38,37)(31,33,36,34) );
G=PermutationGroup([[(1,27,14),(2,28,15),(3,29,16),(4,30,17),(5,31,18),(6,32,19),(7,33,20),(8,34,21),(9,35,22),(10,36,23),(11,37,24),(12,38,25),(13,39,26)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39)], [(2,9,13,6),(3,4,12,11),(5,7,10,8),(15,22,26,19),(16,17,25,24),(18,20,23,21),(28,35,39,32),(29,30,38,37),(31,33,36,34)]])
C3×C13⋊C4 is a maximal subgroup of
C13⋊C36
Matrix representation of C3×C13⋊C4 ►in GL4(𝔽157) generated by
144 | 0 | 0 | 0 |
0 | 144 | 0 | 0 |
0 | 0 | 144 | 0 |
0 | 0 | 0 | 144 |
103 | 122 | 103 | 156 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 |
54 | 89 | 109 | 55 |
122 | 48 | 67 | 102 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,GF(157))| [144,0,0,0,0,144,0,0,0,0,144,0,0,0,0,144],[103,1,0,0,122,0,1,0,103,0,0,1,156,0,0,0],[1,54,122,0,0,89,48,0,0,109,67,1,0,55,102,0] >;
C3×C13⋊C4 in GAP, Magma, Sage, TeX
C_3\times C_{13}\rtimes C_4
% in TeX
G:=Group("C3xC13:C4");
// GroupNames label
G:=SmallGroup(156,9);
// by ID
G=gap.SmallGroup(156,9);
# by ID
G:=PCGroup([4,-2,-3,-2,-13,24,1539,395]);
// Polycyclic
G:=Group<a,b,c|a^3=b^13=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^5>;
// generators/relations
Export
Subgroup lattice of C3×C13⋊C4 in TeX
Character table of C3×C13⋊C4 in TeX