Copied to
clipboard

G = C3×C20.D4order 480 = 25·3·5

Direct product of C3 and C20.D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C3×C20.D4, C60.118D4, (C6×D4).7D5, C20.8(C3×D4), (D4×C10).2C6, (D4×C30).7C2, C4.Dic53C6, C23.(C3×Dic5), (C22×C30).3C4, (C2×C12).213D10, C12.92(C5⋊D4), C1511(C4.D4), (C22×C10).4C12, C22.2(C6×Dic5), (C22×C6).1Dic5, (C2×C60).280C22, C6.23(C23.D5), C30.111(C22⋊C4), (C2×C4).3(C6×D5), C53(C3×C4.D4), (C2×D4).2(C3×D5), C4.13(C3×C5⋊D4), (C2×C20).16(C2×C6), (C2×C30).185(C2×C4), (C2×C10).49(C2×C12), C2.4(C3×C23.D5), C10.25(C3×C22⋊C4), (C3×C4.Dic5)⋊15C2, (C2×C6).20(C2×Dic5), SmallGroup(480,111)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C3×C20.D4
C1C5C10C2×C10C2×C20C2×C60C3×C4.Dic5 — C3×C20.D4
C5C10C2×C10 — C3×C20.D4
C1C6C2×C12C6×D4

Generators and relations for C3×C20.D4
 G = < a,b,c,d | a3=b20=1, c4=b10, d2=b5, ab=ba, ac=ca, ad=da, cbc-1=b-1, dbd-1=b9, dcd-1=b15c3 >

Subgroups: 224 in 92 conjugacy classes, 42 normal (22 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, C6, C6, C8, C2×C4, D4, C23, C10, C10, C12, C2×C6, C2×C6, C15, M4(2), C2×D4, C20, C2×C10, C2×C10, C24, C2×C12, C3×D4, C22×C6, C30, C30, C4.D4, C52C8, C2×C20, C5×D4, C22×C10, C3×M4(2), C6×D4, C60, C2×C30, C2×C30, C4.Dic5, D4×C10, C3×C4.D4, C3×C52C8, C2×C60, D4×C15, C22×C30, C20.D4, C3×C4.Dic5, D4×C30, C3×C20.D4
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, D5, C12, C2×C6, C22⋊C4, Dic5, D10, C2×C12, C3×D4, C3×D5, C4.D4, C2×Dic5, C5⋊D4, C3×C22⋊C4, C3×Dic5, C6×D5, C23.D5, C3×C4.D4, C6×Dic5, C3×C5⋊D4, C20.D4, C3×C23.D5, C3×C20.D4

Smallest permutation representation of C3×C20.D4
On 120 points
Generators in S120
(1 56 29)(2 57 30)(3 58 31)(4 59 32)(5 60 33)(6 41 34)(7 42 35)(8 43 36)(9 44 37)(10 45 38)(11 46 39)(12 47 40)(13 48 21)(14 49 22)(15 50 23)(16 51 24)(17 52 25)(18 53 26)(19 54 27)(20 55 28)(61 106 96)(62 107 97)(63 108 98)(64 109 99)(65 110 100)(66 111 81)(67 112 82)(68 113 83)(69 114 84)(70 115 85)(71 116 86)(72 117 87)(73 118 88)(74 119 89)(75 120 90)(76 101 91)(77 102 92)(78 103 93)(79 104 94)(80 105 95)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 61 6 76 11 71 16 66)(2 80 7 75 12 70 17 65)(3 79 8 74 13 69 18 64)(4 78 9 73 14 68 19 63)(5 77 10 72 15 67 20 62)(21 84 26 99 31 94 36 89)(22 83 27 98 32 93 37 88)(23 82 28 97 33 92 38 87)(24 81 29 96 34 91 39 86)(25 100 30 95 35 90 40 85)(41 101 46 116 51 111 56 106)(42 120 47 115 52 110 57 105)(43 119 48 114 53 109 58 104)(44 118 49 113 54 108 59 103)(45 117 50 112 55 107 60 102)
(1 71 6 76 11 61 16 66)(2 80 7 65 12 70 17 75)(3 69 8 74 13 79 18 64)(4 78 9 63 14 68 19 73)(5 67 10 72 15 77 20 62)(21 94 26 99 31 84 36 89)(22 83 27 88 32 93 37 98)(23 92 28 97 33 82 38 87)(24 81 29 86 34 91 39 96)(25 90 30 95 35 100 40 85)(41 101 46 106 51 111 56 116)(42 110 47 115 52 120 57 105)(43 119 48 104 53 109 58 114)(44 108 49 113 54 118 59 103)(45 117 50 102 55 107 60 112)

G:=sub<Sym(120)| (1,56,29)(2,57,30)(3,58,31)(4,59,32)(5,60,33)(6,41,34)(7,42,35)(8,43,36)(9,44,37)(10,45,38)(11,46,39)(12,47,40)(13,48,21)(14,49,22)(15,50,23)(16,51,24)(17,52,25)(18,53,26)(19,54,27)(20,55,28)(61,106,96)(62,107,97)(63,108,98)(64,109,99)(65,110,100)(66,111,81)(67,112,82)(68,113,83)(69,114,84)(70,115,85)(71,116,86)(72,117,87)(73,118,88)(74,119,89)(75,120,90)(76,101,91)(77,102,92)(78,103,93)(79,104,94)(80,105,95), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,61,6,76,11,71,16,66)(2,80,7,75,12,70,17,65)(3,79,8,74,13,69,18,64)(4,78,9,73,14,68,19,63)(5,77,10,72,15,67,20,62)(21,84,26,99,31,94,36,89)(22,83,27,98,32,93,37,88)(23,82,28,97,33,92,38,87)(24,81,29,96,34,91,39,86)(25,100,30,95,35,90,40,85)(41,101,46,116,51,111,56,106)(42,120,47,115,52,110,57,105)(43,119,48,114,53,109,58,104)(44,118,49,113,54,108,59,103)(45,117,50,112,55,107,60,102), (1,71,6,76,11,61,16,66)(2,80,7,65,12,70,17,75)(3,69,8,74,13,79,18,64)(4,78,9,63,14,68,19,73)(5,67,10,72,15,77,20,62)(21,94,26,99,31,84,36,89)(22,83,27,88,32,93,37,98)(23,92,28,97,33,82,38,87)(24,81,29,86,34,91,39,96)(25,90,30,95,35,100,40,85)(41,101,46,106,51,111,56,116)(42,110,47,115,52,120,57,105)(43,119,48,104,53,109,58,114)(44,108,49,113,54,118,59,103)(45,117,50,102,55,107,60,112)>;

G:=Group( (1,56,29)(2,57,30)(3,58,31)(4,59,32)(5,60,33)(6,41,34)(7,42,35)(8,43,36)(9,44,37)(10,45,38)(11,46,39)(12,47,40)(13,48,21)(14,49,22)(15,50,23)(16,51,24)(17,52,25)(18,53,26)(19,54,27)(20,55,28)(61,106,96)(62,107,97)(63,108,98)(64,109,99)(65,110,100)(66,111,81)(67,112,82)(68,113,83)(69,114,84)(70,115,85)(71,116,86)(72,117,87)(73,118,88)(74,119,89)(75,120,90)(76,101,91)(77,102,92)(78,103,93)(79,104,94)(80,105,95), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,61,6,76,11,71,16,66)(2,80,7,75,12,70,17,65)(3,79,8,74,13,69,18,64)(4,78,9,73,14,68,19,63)(5,77,10,72,15,67,20,62)(21,84,26,99,31,94,36,89)(22,83,27,98,32,93,37,88)(23,82,28,97,33,92,38,87)(24,81,29,96,34,91,39,86)(25,100,30,95,35,90,40,85)(41,101,46,116,51,111,56,106)(42,120,47,115,52,110,57,105)(43,119,48,114,53,109,58,104)(44,118,49,113,54,108,59,103)(45,117,50,112,55,107,60,102), (1,71,6,76,11,61,16,66)(2,80,7,65,12,70,17,75)(3,69,8,74,13,79,18,64)(4,78,9,63,14,68,19,73)(5,67,10,72,15,77,20,62)(21,94,26,99,31,84,36,89)(22,83,27,88,32,93,37,98)(23,92,28,97,33,82,38,87)(24,81,29,86,34,91,39,96)(25,90,30,95,35,100,40,85)(41,101,46,106,51,111,56,116)(42,110,47,115,52,120,57,105)(43,119,48,104,53,109,58,114)(44,108,49,113,54,118,59,103)(45,117,50,102,55,107,60,112) );

G=PermutationGroup([[(1,56,29),(2,57,30),(3,58,31),(4,59,32),(5,60,33),(6,41,34),(7,42,35),(8,43,36),(9,44,37),(10,45,38),(11,46,39),(12,47,40),(13,48,21),(14,49,22),(15,50,23),(16,51,24),(17,52,25),(18,53,26),(19,54,27),(20,55,28),(61,106,96),(62,107,97),(63,108,98),(64,109,99),(65,110,100),(66,111,81),(67,112,82),(68,113,83),(69,114,84),(70,115,85),(71,116,86),(72,117,87),(73,118,88),(74,119,89),(75,120,90),(76,101,91),(77,102,92),(78,103,93),(79,104,94),(80,105,95)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,61,6,76,11,71,16,66),(2,80,7,75,12,70,17,65),(3,79,8,74,13,69,18,64),(4,78,9,73,14,68,19,63),(5,77,10,72,15,67,20,62),(21,84,26,99,31,94,36,89),(22,83,27,98,32,93,37,88),(23,82,28,97,33,92,38,87),(24,81,29,96,34,91,39,86),(25,100,30,95,35,90,40,85),(41,101,46,116,51,111,56,106),(42,120,47,115,52,110,57,105),(43,119,48,114,53,109,58,104),(44,118,49,113,54,108,59,103),(45,117,50,112,55,107,60,102)], [(1,71,6,76,11,61,16,66),(2,80,7,65,12,70,17,75),(3,69,8,74,13,79,18,64),(4,78,9,63,14,68,19,73),(5,67,10,72,15,77,20,62),(21,94,26,99,31,84,36,89),(22,83,27,88,32,93,37,98),(23,92,28,97,33,82,38,87),(24,81,29,86,34,91,39,96),(25,90,30,95,35,100,40,85),(41,101,46,106,51,111,56,116),(42,110,47,115,52,120,57,105),(43,119,48,104,53,109,58,114),(44,108,49,113,54,118,59,103),(45,117,50,102,55,107,60,112)]])

93 conjugacy classes

class 1 2A2B2C2D3A3B4A4B5A5B6A6B6C6D6E6F6G6H8A8B8C8D10A···10F10G···10N12A12B12C12D15A15B15C15D20A20B20C20D24A···24H30A···30L30M···30AB60A···60H
order1222233445566666666888810···1010···1012121212151515152020202024···2430···3030···3060···60
size1124411222211224444202020202···24···422222222444420···202···24···44···4

93 irreducible representations

dim1111111122222222224444
type++++++-+
imageC1C2C2C3C4C6C6C12D4D5D10Dic5C3×D4C3×D5C5⋊D4C6×D5C3×Dic5C3×C5⋊D4C4.D4C3×C4.D4C20.D4C3×C20.D4
kernelC3×C20.D4C3×C4.Dic5D4×C30C20.D4C22×C30C4.Dic5D4×C10C22×C10C60C6×D4C2×C12C22×C6C20C2×D4C12C2×C4C23C4C15C5C3C1
# reps12124428222444848161248

Matrix representation of C3×C20.D4 in GL4(𝔽241) generated by

15000
01500
00150
00015
,
09800
143000
00091
001500
,
0010
000240
0100
1000
,
0010
0001
0100
240000
G:=sub<GL(4,GF(241))| [15,0,0,0,0,15,0,0,0,0,15,0,0,0,0,15],[0,143,0,0,98,0,0,0,0,0,0,150,0,0,91,0],[0,0,0,1,0,0,1,0,1,0,0,0,0,240,0,0],[0,0,0,240,0,0,1,0,1,0,0,0,0,1,0,0] >;

C3×C20.D4 in GAP, Magma, Sage, TeX

C_3\times C_{20}.D_4
% in TeX

G:=Group("C3xC20.D4");
// GroupNames label

G:=SmallGroup(480,111);
// by ID

G=gap.SmallGroup(480,111);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-5,84,365,850,136,2524,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^20=1,c^4=b^10,d^2=b^5,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,d*b*d^-1=b^9,d*c*d^-1=b^15*c^3>;
// generators/relations

׿
×
𝔽