Copied to
clipboard

G = CSU2(𝔽3)⋊D5order 480 = 25·3·5

1st semidirect product of CSU2(𝔽3) and D5 acting via D5/C5=C2

non-abelian, soluble

Aliases: Dic5.1S4, CSU2(𝔽3)⋊1D5, SL2(𝔽3).1D10, C2.4(D5×S4), C10.1(C2×S4), Q8.1(S3×D5), (C5×Q8).1D6, C51(C4.S4), Q8.D153C2, Q82D5.1S3, Dic5.A4.1C2, (C5×CSU2(𝔽3))⋊3C2, (C5×SL2(𝔽3)).1C22, SmallGroup(480,967)

Series: Derived Chief Lower central Upper central

C1C2Q8C5×SL2(𝔽3) — CSU2(𝔽3)⋊D5
C1C2Q8C5×Q8C5×SL2(𝔽3)Dic5.A4 — CSU2(𝔽3)⋊D5
C5×SL2(𝔽3) — CSU2(𝔽3)⋊D5
C1C2

Generators and relations for CSU2(𝔽3)⋊D5
 G = < a,b,c,d,e,f | a4=c3=e5=f2=1, b2=d2=a2, bab-1=faf=dbd-1=a-1, cac-1=ab, dad-1=fbf=a2b, ae=ea, cbc-1=a, be=eb, dcd-1=c-1, ce=ec, fcf=ac, de=ed, df=fd, fef=e-1 >

Subgroups: 514 in 72 conjugacy classes, 15 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C5, C6, C8, C2×C4, D4, Q8, Q8, D5, C10, Dic3, C12, C15, M4(2), SD16, Q16, C2×Q8, C4○D4, Dic5, Dic5, C20, D10, SL2(𝔽3), Dic6, C30, C8.C22, C52C8, C40, Dic10, C4×D5, D20, C5×Q8, C5×Q8, CSU2(𝔽3), CSU2(𝔽3), C4.A4, C5×Dic3, C3×Dic5, Dic15, C8⋊D5, C40⋊C2, Q8⋊D5, C5⋊Q16, C5×Q16, Q8×D5, Q82D5, C4.S4, C15⋊Q8, C5×SL2(𝔽3), Q16⋊D5, C5×CSU2(𝔽3), Q8.D15, Dic5.A4, CSU2(𝔽3)⋊D5
Quotients: C1, C2, C22, S3, D5, D6, D10, S4, C2×S4, S3×D5, C4.S4, D5×S4, CSU2(𝔽3)⋊D5

Character table of CSU2(𝔽3)⋊D5

 class 12A2B34A4B4C4D5A5B68A8B10A10B12A12B15A15B20A20B20C20D30A30B40A40B40C40D
 size 1130861012602281260224040161612122424161612121212
ρ111111111111111111111111111111    trivial
ρ2111111-1-1111-1-111111111-1-111-1-1-1-1    linear of order 2
ρ311-111-1-11111-1111-1-11111-1-111-1-1-1-1    linear of order 2
ρ411-111-11-11111-111-1-1111111111111    linear of order 2
ρ522-2-12-20022-1002211-1-12200-1-10000    orthogonal lifted from D6
ρ6222-1220022-10022-1-1-1-12200-1-10000    orthogonal lifted from S3
ρ722022020-1-5/2-1+5/2220-1+5/2-1-5/200-1+5/2-1-5/2-1+5/2-1-5/2-1+5/2-1-5/2-1-5/2-1+5/2-1+5/2-1+5/2-1-5/2-1-5/2    orthogonal lifted from D5
ρ8220220-20-1+5/2-1-5/22-20-1-5/2-1+5/200-1-5/2-1+5/2-1-5/2-1+5/21+5/21-5/2-1+5/2-1-5/21+5/21+5/21-5/21-5/2    orthogonal lifted from D10
ρ922022020-1+5/2-1-5/2220-1-5/2-1+5/200-1-5/2-1+5/2-1-5/2-1+5/2-1-5/2-1+5/2-1+5/2-1-5/2-1-5/2-1-5/2-1+5/2-1+5/2    orthogonal lifted from D5
ρ10220220-20-1-5/2-1+5/22-20-1+5/2-1-5/200-1+5/2-1-5/2-1+5/2-1-5/21-5/21+5/2-1-5/2-1+5/21-5/21-5/21+5/21+5/2    orthogonal lifted from D10
ρ113310-1-31-1330-11330000-1-11100-1-1-1-1    orthogonal lifted from C2×S4
ρ123310-1-3-113301-1330000-1-1-1-1001111    orthogonal lifted from C2×S4
ρ1333-10-13-1-133011330000-1-1-1-1001111    orthogonal lifted from S4
ρ1433-10-1311330-1-1330000-1-11100-1-1-1-1    orthogonal lifted from S4
ρ15440-24000-1-5-1+5-200-1+5-1-5001-5/21+5/2-1+5-1-5001+5/21-5/20000    orthogonal lifted from S3×D5
ρ16440-24000-1+5-1-5-200-1-5-1+5001+5/21-5/2-1-5-1+5001-5/21+5/20000    orthogonal lifted from S3×D5
ρ174-40-2000044200-4-400-2-20000220000    symplectic lifted from C4.S4, Schur index 2
ρ184-401000044-100-4-43-3110000-1-10000    symplectic lifted from C4.S4, Schur index 2
ρ194-401000044-100-4-4-33110000-1-10000    symplectic lifted from C4.S4, Schur index 2
ρ204-40-20000-1+5-1-52001+51-5001+5/21-5/20000-1+5/2-1-5/283ζ5383ζ528ζ538ζ52ζ83ζ5383ζ528ζ538ζ52ζ83ζ5483ζ58ζ548ζ5ζ87ζ5487ζ585ζ5485ζ5    complex faithful
ρ214-40-20000-1-5-1+52001-51+5001-5/21+5/20000-1-5/2-1+5/2ζ87ζ5487ζ585ζ5485ζ5ζ83ζ5483ζ58ζ548ζ583ζ5383ζ528ζ538ζ52ζ83ζ5383ζ528ζ538ζ52    complex faithful
ρ224-40-20000-1+5-1-52001+51-5001+5/21-5/20000-1+5/2-1-5/2ζ83ζ5383ζ528ζ538ζ5283ζ5383ζ528ζ538ζ52ζ87ζ5487ζ585ζ5485ζ5ζ83ζ5483ζ58ζ548ζ5    complex faithful
ρ234-40-20000-1-5-1+52001-51+5001-5/21+5/20000-1-5/2-1+5/2ζ83ζ5483ζ58ζ548ζ5ζ87ζ5487ζ585ζ5485ζ5ζ83ζ5383ζ528ζ538ζ5283ζ5383ζ528ζ538ζ52    complex faithful
ρ246600-2020-3-35/2-3+35/20-20-3+35/2-3-35/200001-5/21+5/2-1+5/2-1-5/2001-5/21-5/21+5/21+5/2    orthogonal lifted from D5×S4
ρ256600-20-20-3+35/2-3-35/2020-3-35/2-3+35/200001+5/21-5/21+5/21-5/200-1-5/2-1-5/2-1+5/2-1+5/2    orthogonal lifted from D5×S4
ρ266600-20-20-3-35/2-3+35/2020-3+35/2-3-35/200001-5/21+5/21-5/21+5/200-1+5/2-1+5/2-1-5/2-1-5/2    orthogonal lifted from D5×S4
ρ276600-2020-3+35/2-3-35/20-20-3-35/2-3+35/200001+5/21-5/2-1-5/2-1+5/2001+5/21+5/21-5/21-5/2    orthogonal lifted from D5×S4
ρ288-8020000-2-25-2+25-2002-252+2500-1+5/2-1-5/200001+5/21-5/20000    symplectic faithful, Schur index 2
ρ298-8020000-2+25-2-25-2002+252-2500-1-5/2-1+5/200001-5/21+5/20000    symplectic faithful, Schur index 2

Smallest permutation representation of CSU2(𝔽3)⋊D5
On 160 points
Generators in S160
(1 54 12 42)(2 55 13 43)(3 51 14 44)(4 52 15 45)(5 53 11 41)(6 158 140 21)(7 159 136 22)(8 160 137 23)(9 156 138 24)(10 157 139 25)(16 31 141 129)(17 32 142 130)(18 33 143 126)(19 34 144 127)(20 35 145 128)(26 69 50 40)(27 70 46 36)(28 66 47 37)(29 67 48 38)(30 68 49 39)(56 73 94 111)(57 74 95 112)(58 75 91 113)(59 71 92 114)(60 72 93 115)(61 83 106 78)(62 84 107 79)(63 85 108 80)(64 81 109 76)(65 82 110 77)(86 123 152 117)(87 124 153 118)(88 125 154 119)(89 121 155 120)(90 122 151 116)(96 105 150 134)(97 101 146 135)(98 102 147 131)(99 103 148 132)(100 104 149 133)
(1 66 12 37)(2 67 13 38)(3 68 14 39)(4 69 15 40)(5 70 11 36)(6 144 140 19)(7 145 136 20)(8 141 137 16)(9 142 138 17)(10 143 139 18)(21 127 158 34)(22 128 159 35)(23 129 160 31)(24 130 156 32)(25 126 157 33)(26 45 50 52)(27 41 46 53)(28 42 47 54)(29 43 48 55)(30 44 49 51)(56 65 94 110)(57 61 95 106)(58 62 91 107)(59 63 92 108)(60 64 93 109)(71 80 114 85)(72 76 115 81)(73 77 111 82)(74 78 112 83)(75 79 113 84)(86 103 152 132)(87 104 153 133)(88 105 154 134)(89 101 155 135)(90 102 151 131)(96 119 150 125)(97 120 146 121)(98 116 147 122)(99 117 148 123)(100 118 149 124)
(16 129 23)(17 130 24)(18 126 25)(19 127 21)(20 128 22)(26 52 69)(27 53 70)(28 54 66)(29 55 67)(30 51 68)(31 160 141)(32 156 142)(33 157 143)(34 158 144)(35 159 145)(36 46 41)(37 47 42)(38 48 43)(39 49 44)(40 50 45)(56 111 77)(57 112 78)(58 113 79)(59 114 80)(60 115 76)(71 85 92)(72 81 93)(73 82 94)(74 83 95)(75 84 91)(86 132 123)(87 133 124)(88 134 125)(89 135 121)(90 131 122)(101 120 155)(102 116 151)(103 117 152)(104 118 153)(105 119 154)
(1 65 12 110)(2 61 13 106)(3 62 14 107)(4 63 15 108)(5 64 11 109)(6 100 140 149)(7 96 136 150)(8 97 137 146)(9 98 138 147)(10 99 139 148)(16 101 141 135)(17 102 142 131)(18 103 143 132)(19 104 144 133)(20 105 145 134)(21 118 158 124)(22 119 159 125)(23 120 160 121)(24 116 156 122)(25 117 157 123)(26 114 50 71)(27 115 46 72)(28 111 47 73)(29 112 48 74)(30 113 49 75)(31 89 129 155)(32 90 130 151)(33 86 126 152)(34 87 127 153)(35 88 128 154)(36 81 70 76)(37 82 66 77)(38 83 67 78)(39 84 68 79)(40 85 69 80)(41 93 53 60)(42 94 54 56)(43 95 55 57)(44 91 51 58)(45 92 52 59)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 86)(2 90)(3 89)(4 88)(5 87)(6 72)(7 71)(8 75)(9 74)(10 73)(11 153)(12 152)(13 151)(14 155)(15 154)(16 79)(17 78)(18 77)(19 76)(20 80)(21 93)(22 92)(23 91)(24 95)(25 94)(26 96)(27 100)(28 99)(29 98)(30 97)(31 107)(32 106)(33 110)(34 109)(35 108)(36 104)(37 103)(38 102)(39 101)(40 105)(41 124)(42 123)(43 122)(44 121)(45 125)(46 149)(47 148)(48 147)(49 146)(50 150)(51 120)(52 119)(53 118)(54 117)(55 116)(56 157)(57 156)(58 160)(59 159)(60 158)(61 130)(62 129)(63 128)(64 127)(65 126)(66 132)(67 131)(68 135)(69 134)(70 133)(81 144)(82 143)(83 142)(84 141)(85 145)(111 139)(112 138)(113 137)(114 136)(115 140)

G:=sub<Sym(160)| (1,54,12,42)(2,55,13,43)(3,51,14,44)(4,52,15,45)(5,53,11,41)(6,158,140,21)(7,159,136,22)(8,160,137,23)(9,156,138,24)(10,157,139,25)(16,31,141,129)(17,32,142,130)(18,33,143,126)(19,34,144,127)(20,35,145,128)(26,69,50,40)(27,70,46,36)(28,66,47,37)(29,67,48,38)(30,68,49,39)(56,73,94,111)(57,74,95,112)(58,75,91,113)(59,71,92,114)(60,72,93,115)(61,83,106,78)(62,84,107,79)(63,85,108,80)(64,81,109,76)(65,82,110,77)(86,123,152,117)(87,124,153,118)(88,125,154,119)(89,121,155,120)(90,122,151,116)(96,105,150,134)(97,101,146,135)(98,102,147,131)(99,103,148,132)(100,104,149,133), (1,66,12,37)(2,67,13,38)(3,68,14,39)(4,69,15,40)(5,70,11,36)(6,144,140,19)(7,145,136,20)(8,141,137,16)(9,142,138,17)(10,143,139,18)(21,127,158,34)(22,128,159,35)(23,129,160,31)(24,130,156,32)(25,126,157,33)(26,45,50,52)(27,41,46,53)(28,42,47,54)(29,43,48,55)(30,44,49,51)(56,65,94,110)(57,61,95,106)(58,62,91,107)(59,63,92,108)(60,64,93,109)(71,80,114,85)(72,76,115,81)(73,77,111,82)(74,78,112,83)(75,79,113,84)(86,103,152,132)(87,104,153,133)(88,105,154,134)(89,101,155,135)(90,102,151,131)(96,119,150,125)(97,120,146,121)(98,116,147,122)(99,117,148,123)(100,118,149,124), (16,129,23)(17,130,24)(18,126,25)(19,127,21)(20,128,22)(26,52,69)(27,53,70)(28,54,66)(29,55,67)(30,51,68)(31,160,141)(32,156,142)(33,157,143)(34,158,144)(35,159,145)(36,46,41)(37,47,42)(38,48,43)(39,49,44)(40,50,45)(56,111,77)(57,112,78)(58,113,79)(59,114,80)(60,115,76)(71,85,92)(72,81,93)(73,82,94)(74,83,95)(75,84,91)(86,132,123)(87,133,124)(88,134,125)(89,135,121)(90,131,122)(101,120,155)(102,116,151)(103,117,152)(104,118,153)(105,119,154), (1,65,12,110)(2,61,13,106)(3,62,14,107)(4,63,15,108)(5,64,11,109)(6,100,140,149)(7,96,136,150)(8,97,137,146)(9,98,138,147)(10,99,139,148)(16,101,141,135)(17,102,142,131)(18,103,143,132)(19,104,144,133)(20,105,145,134)(21,118,158,124)(22,119,159,125)(23,120,160,121)(24,116,156,122)(25,117,157,123)(26,114,50,71)(27,115,46,72)(28,111,47,73)(29,112,48,74)(30,113,49,75)(31,89,129,155)(32,90,130,151)(33,86,126,152)(34,87,127,153)(35,88,128,154)(36,81,70,76)(37,82,66,77)(38,83,67,78)(39,84,68,79)(40,85,69,80)(41,93,53,60)(42,94,54,56)(43,95,55,57)(44,91,51,58)(45,92,52,59), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,86)(2,90)(3,89)(4,88)(5,87)(6,72)(7,71)(8,75)(9,74)(10,73)(11,153)(12,152)(13,151)(14,155)(15,154)(16,79)(17,78)(18,77)(19,76)(20,80)(21,93)(22,92)(23,91)(24,95)(25,94)(26,96)(27,100)(28,99)(29,98)(30,97)(31,107)(32,106)(33,110)(34,109)(35,108)(36,104)(37,103)(38,102)(39,101)(40,105)(41,124)(42,123)(43,122)(44,121)(45,125)(46,149)(47,148)(48,147)(49,146)(50,150)(51,120)(52,119)(53,118)(54,117)(55,116)(56,157)(57,156)(58,160)(59,159)(60,158)(61,130)(62,129)(63,128)(64,127)(65,126)(66,132)(67,131)(68,135)(69,134)(70,133)(81,144)(82,143)(83,142)(84,141)(85,145)(111,139)(112,138)(113,137)(114,136)(115,140)>;

G:=Group( (1,54,12,42)(2,55,13,43)(3,51,14,44)(4,52,15,45)(5,53,11,41)(6,158,140,21)(7,159,136,22)(8,160,137,23)(9,156,138,24)(10,157,139,25)(16,31,141,129)(17,32,142,130)(18,33,143,126)(19,34,144,127)(20,35,145,128)(26,69,50,40)(27,70,46,36)(28,66,47,37)(29,67,48,38)(30,68,49,39)(56,73,94,111)(57,74,95,112)(58,75,91,113)(59,71,92,114)(60,72,93,115)(61,83,106,78)(62,84,107,79)(63,85,108,80)(64,81,109,76)(65,82,110,77)(86,123,152,117)(87,124,153,118)(88,125,154,119)(89,121,155,120)(90,122,151,116)(96,105,150,134)(97,101,146,135)(98,102,147,131)(99,103,148,132)(100,104,149,133), (1,66,12,37)(2,67,13,38)(3,68,14,39)(4,69,15,40)(5,70,11,36)(6,144,140,19)(7,145,136,20)(8,141,137,16)(9,142,138,17)(10,143,139,18)(21,127,158,34)(22,128,159,35)(23,129,160,31)(24,130,156,32)(25,126,157,33)(26,45,50,52)(27,41,46,53)(28,42,47,54)(29,43,48,55)(30,44,49,51)(56,65,94,110)(57,61,95,106)(58,62,91,107)(59,63,92,108)(60,64,93,109)(71,80,114,85)(72,76,115,81)(73,77,111,82)(74,78,112,83)(75,79,113,84)(86,103,152,132)(87,104,153,133)(88,105,154,134)(89,101,155,135)(90,102,151,131)(96,119,150,125)(97,120,146,121)(98,116,147,122)(99,117,148,123)(100,118,149,124), (16,129,23)(17,130,24)(18,126,25)(19,127,21)(20,128,22)(26,52,69)(27,53,70)(28,54,66)(29,55,67)(30,51,68)(31,160,141)(32,156,142)(33,157,143)(34,158,144)(35,159,145)(36,46,41)(37,47,42)(38,48,43)(39,49,44)(40,50,45)(56,111,77)(57,112,78)(58,113,79)(59,114,80)(60,115,76)(71,85,92)(72,81,93)(73,82,94)(74,83,95)(75,84,91)(86,132,123)(87,133,124)(88,134,125)(89,135,121)(90,131,122)(101,120,155)(102,116,151)(103,117,152)(104,118,153)(105,119,154), (1,65,12,110)(2,61,13,106)(3,62,14,107)(4,63,15,108)(5,64,11,109)(6,100,140,149)(7,96,136,150)(8,97,137,146)(9,98,138,147)(10,99,139,148)(16,101,141,135)(17,102,142,131)(18,103,143,132)(19,104,144,133)(20,105,145,134)(21,118,158,124)(22,119,159,125)(23,120,160,121)(24,116,156,122)(25,117,157,123)(26,114,50,71)(27,115,46,72)(28,111,47,73)(29,112,48,74)(30,113,49,75)(31,89,129,155)(32,90,130,151)(33,86,126,152)(34,87,127,153)(35,88,128,154)(36,81,70,76)(37,82,66,77)(38,83,67,78)(39,84,68,79)(40,85,69,80)(41,93,53,60)(42,94,54,56)(43,95,55,57)(44,91,51,58)(45,92,52,59), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,86)(2,90)(3,89)(4,88)(5,87)(6,72)(7,71)(8,75)(9,74)(10,73)(11,153)(12,152)(13,151)(14,155)(15,154)(16,79)(17,78)(18,77)(19,76)(20,80)(21,93)(22,92)(23,91)(24,95)(25,94)(26,96)(27,100)(28,99)(29,98)(30,97)(31,107)(32,106)(33,110)(34,109)(35,108)(36,104)(37,103)(38,102)(39,101)(40,105)(41,124)(42,123)(43,122)(44,121)(45,125)(46,149)(47,148)(48,147)(49,146)(50,150)(51,120)(52,119)(53,118)(54,117)(55,116)(56,157)(57,156)(58,160)(59,159)(60,158)(61,130)(62,129)(63,128)(64,127)(65,126)(66,132)(67,131)(68,135)(69,134)(70,133)(81,144)(82,143)(83,142)(84,141)(85,145)(111,139)(112,138)(113,137)(114,136)(115,140) );

G=PermutationGroup([[(1,54,12,42),(2,55,13,43),(3,51,14,44),(4,52,15,45),(5,53,11,41),(6,158,140,21),(7,159,136,22),(8,160,137,23),(9,156,138,24),(10,157,139,25),(16,31,141,129),(17,32,142,130),(18,33,143,126),(19,34,144,127),(20,35,145,128),(26,69,50,40),(27,70,46,36),(28,66,47,37),(29,67,48,38),(30,68,49,39),(56,73,94,111),(57,74,95,112),(58,75,91,113),(59,71,92,114),(60,72,93,115),(61,83,106,78),(62,84,107,79),(63,85,108,80),(64,81,109,76),(65,82,110,77),(86,123,152,117),(87,124,153,118),(88,125,154,119),(89,121,155,120),(90,122,151,116),(96,105,150,134),(97,101,146,135),(98,102,147,131),(99,103,148,132),(100,104,149,133)], [(1,66,12,37),(2,67,13,38),(3,68,14,39),(4,69,15,40),(5,70,11,36),(6,144,140,19),(7,145,136,20),(8,141,137,16),(9,142,138,17),(10,143,139,18),(21,127,158,34),(22,128,159,35),(23,129,160,31),(24,130,156,32),(25,126,157,33),(26,45,50,52),(27,41,46,53),(28,42,47,54),(29,43,48,55),(30,44,49,51),(56,65,94,110),(57,61,95,106),(58,62,91,107),(59,63,92,108),(60,64,93,109),(71,80,114,85),(72,76,115,81),(73,77,111,82),(74,78,112,83),(75,79,113,84),(86,103,152,132),(87,104,153,133),(88,105,154,134),(89,101,155,135),(90,102,151,131),(96,119,150,125),(97,120,146,121),(98,116,147,122),(99,117,148,123),(100,118,149,124)], [(16,129,23),(17,130,24),(18,126,25),(19,127,21),(20,128,22),(26,52,69),(27,53,70),(28,54,66),(29,55,67),(30,51,68),(31,160,141),(32,156,142),(33,157,143),(34,158,144),(35,159,145),(36,46,41),(37,47,42),(38,48,43),(39,49,44),(40,50,45),(56,111,77),(57,112,78),(58,113,79),(59,114,80),(60,115,76),(71,85,92),(72,81,93),(73,82,94),(74,83,95),(75,84,91),(86,132,123),(87,133,124),(88,134,125),(89,135,121),(90,131,122),(101,120,155),(102,116,151),(103,117,152),(104,118,153),(105,119,154)], [(1,65,12,110),(2,61,13,106),(3,62,14,107),(4,63,15,108),(5,64,11,109),(6,100,140,149),(7,96,136,150),(8,97,137,146),(9,98,138,147),(10,99,139,148),(16,101,141,135),(17,102,142,131),(18,103,143,132),(19,104,144,133),(20,105,145,134),(21,118,158,124),(22,119,159,125),(23,120,160,121),(24,116,156,122),(25,117,157,123),(26,114,50,71),(27,115,46,72),(28,111,47,73),(29,112,48,74),(30,113,49,75),(31,89,129,155),(32,90,130,151),(33,86,126,152),(34,87,127,153),(35,88,128,154),(36,81,70,76),(37,82,66,77),(38,83,67,78),(39,84,68,79),(40,85,69,80),(41,93,53,60),(42,94,54,56),(43,95,55,57),(44,91,51,58),(45,92,52,59)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,86),(2,90),(3,89),(4,88),(5,87),(6,72),(7,71),(8,75),(9,74),(10,73),(11,153),(12,152),(13,151),(14,155),(15,154),(16,79),(17,78),(18,77),(19,76),(20,80),(21,93),(22,92),(23,91),(24,95),(25,94),(26,96),(27,100),(28,99),(29,98),(30,97),(31,107),(32,106),(33,110),(34,109),(35,108),(36,104),(37,103),(38,102),(39,101),(40,105),(41,124),(42,123),(43,122),(44,121),(45,125),(46,149),(47,148),(48,147),(49,146),(50,150),(51,120),(52,119),(53,118),(54,117),(55,116),(56,157),(57,156),(58,160),(59,159),(60,158),(61,130),(62,129),(63,128),(64,127),(65,126),(66,132),(67,131),(68,135),(69,134),(70,133),(81,144),(82,143),(83,142),(84,141),(85,145),(111,139),(112,138),(113,137),(114,136),(115,140)]])

Matrix representation of CSU2(𝔽3)⋊D5 in GL8(𝔽241)

10000000
01000000
00100000
00010000
00000010
0000240240240239
0000240000
00001101
,
10000000
01000000
00100000
00010000
0000024000
00001000
0000240240240239
00000111
,
240240000000
10000000
002402400000
00100000
00001000
0000002400
00001112
00002402400240
,
2400000000
11000000
0024000000
00110000
000022806262
000006222862
000062228062
0000131313192
,
2400100000
0240010000
50019000000
05001900000
00001000
00000100
00000010
00000001
,
1600200000
0160020000
9408100000
0940810000
00009999990
000004314243
0000198990198
000014209999

G:=sub<GL(8,GF(241))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,240,240,1,0,0,0,0,0,240,0,1,0,0,0,0,1,240,0,0,0,0,0,0,0,239,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,240,0,0,0,0,0,240,0,240,1,0,0,0,0,0,0,240,1,0,0,0,0,0,0,239,1],[240,1,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,0,240,1,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,0,1,0,1,240,0,0,0,0,0,0,1,240,0,0,0,0,0,240,1,0,0,0,0,0,0,0,2,240],[240,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,240,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,228,0,62,13,0,0,0,0,0,62,228,13,0,0,0,0,62,228,0,13,0,0,0,0,62,62,62,192],[240,0,50,0,0,0,0,0,0,240,0,50,0,0,0,0,1,0,190,0,0,0,0,0,0,1,0,190,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[160,0,94,0,0,0,0,0,0,160,0,94,0,0,0,0,2,0,81,0,0,0,0,0,0,2,0,81,0,0,0,0,0,0,0,0,99,0,198,142,0,0,0,0,99,43,99,0,0,0,0,0,99,142,0,99,0,0,0,0,0,43,198,99] >;

CSU2(𝔽3)⋊D5 in GAP, Magma, Sage, TeX

{\rm CSU}_2({\mathbb F}_3)\rtimes D_5
% in TeX

G:=Group("CSU(2,3):D5");
// GroupNames label

G:=SmallGroup(480,967);
// by ID

G=gap.SmallGroup(480,967);
# by ID

G:=PCGroup([7,-2,-2,-3,-5,-2,2,-2,1680,3389,1688,93,1347,2111,3168,172,1272,1909,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^4=c^3=e^5=f^2=1,b^2=d^2=a^2,b*a*b^-1=f*a*f=d*b*d^-1=a^-1,c*a*c^-1=a*b,d*a*d^-1=f*b*f=a^2*b,a*e=e*a,c*b*c^-1=a,b*e=e*b,d*c*d^-1=c^-1,c*e=e*c,f*c*f=a*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations

Export

Character table of CSU2(𝔽3)⋊D5 in TeX

׿
×
𝔽