Extensions 1→N→G→Q→1 with N=SL2(𝔽3) and Q=D10

Direct product G=N×Q with N=SL2(𝔽3) and Q=D10
dρLabelID
C2×D5×SL2(𝔽3)80C2xD5xSL(2,3)480,1039

Semidirect products G=N:Q with N=SL2(𝔽3) and Q=D10
extensionφ:Q→Out NdρLabelID
SL2(𝔽3)⋊1D10 = GL2(𝔽3)⋊D5φ: D10/D5C2 ⊆ Out SL2(𝔽3)804+SL(2,3):1D10480,970
SL2(𝔽3)⋊2D10 = D5×GL2(𝔽3)φ: D10/D5C2 ⊆ Out SL2(𝔽3)404SL(2,3):2D10480,974
SL2(𝔽3)⋊3D10 = C2×Q8⋊D15φ: D10/C10C2 ⊆ Out SL2(𝔽3)80SL(2,3):3D10480,1028
SL2(𝔽3)⋊4D10 = C20.3S4φ: D10/C10C2 ⊆ Out SL2(𝔽3)804+SL(2,3):4D10480,1032
SL2(𝔽3)⋊5D10 = C2×Dic5.A4φ: trivial image160SL(2,3):5D10480,1038
SL2(𝔽3)⋊6D10 = Dic10.A4φ: trivial image1204+SL(2,3):6D10480,1041
SL2(𝔽3)⋊7D10 = D5×C4.A4φ: trivial image804SL(2,3):7D10480,1042

Non-split extensions G=N.Q with N=SL2(𝔽3) and Q=D10
extensionφ:Q→Out NdρLabelID
SL2(𝔽3).1D10 = CSU2(𝔽3)⋊D5φ: D10/D5C2 ⊆ Out SL2(𝔽3)1604SL(2,3).1D10480,967
SL2(𝔽3).2D10 = Dic5.6S4φ: D10/D5C2 ⊆ Out SL2(𝔽3)804SL(2,3).2D10480,968
SL2(𝔽3).3D10 = Dic5.7S4φ: D10/D5C2 ⊆ Out SL2(𝔽3)804+SL(2,3).3D10480,969
SL2(𝔽3).4D10 = D5×CSU2(𝔽3)φ: D10/D5C2 ⊆ Out SL2(𝔽3)804-SL(2,3).4D10480,971
SL2(𝔽3).5D10 = D10.1S4φ: D10/D5C2 ⊆ Out SL2(𝔽3)804-SL(2,3).5D10480,972
SL2(𝔽3).6D10 = D10.2S4φ: D10/D5C2 ⊆ Out SL2(𝔽3)804SL(2,3).6D10480,973
SL2(𝔽3).7D10 = C2×Q8.D15φ: D10/C10C2 ⊆ Out SL2(𝔽3)160SL(2,3).7D10480,1027
SL2(𝔽3).8D10 = Q8.D30φ: D10/C10C2 ⊆ Out SL2(𝔽3)804SL(2,3).8D10480,1029
SL2(𝔽3).9D10 = C20.2S4φ: D10/C10C2 ⊆ Out SL2(𝔽3)1604-SL(2,3).9D10480,1030
SL2(𝔽3).10D10 = C20.6S4φ: D10/C10C2 ⊆ Out SL2(𝔽3)804SL(2,3).10D10480,1031
SL2(𝔽3).11D10 = SL2(𝔽3).11D10φ: trivial image804SL(2,3).11D10480,1040
SL2(𝔽3).12D10 = D20.A4φ: trivial image804-SL(2,3).12D10480,1043

׿
×
𝔽