direct product, non-abelian, soluble, monomial
Aliases: D5×S4, A4⋊1D10, C5⋊S4⋊C2, (C5×S4)⋊C2, C5⋊1(C2×S4), (D5×A4)⋊C2, (C2×C10)⋊D6, C22⋊(S3×D5), (C5×A4)⋊C22, (C22×D5)⋊S3, SmallGroup(240,194)
Series: Derived ►Chief ►Lower central ►Upper central
C5×A4 — D5×S4 |
Generators and relations for D5×S4
G = < a,b,c,d,e,f | a5=b2=c2=d2=e3=f2=1, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, ece-1=fcf=cd=dc, ede-1=c, df=fd, fef=e-1 >
Subgroups: 468 in 66 conjugacy classes, 13 normal (all characteristic)
C1, C2, C3, C4, C22, C22, C5, S3, C6, C2×C4, D4, C23, D5, D5, C10, A4, D6, C15, C2×D4, Dic5, C20, D10, C2×C10, C2×C10, S4, S4, C2×A4, C5×S3, C3×D5, D15, C4×D5, D20, C5⋊D4, C5×D4, C22×D5, C22×D5, C2×S4, S3×D5, C5×A4, D4×D5, C5×S4, C5⋊S4, D5×A4, D5×S4
Quotients: C1, C2, C22, S3, D5, D6, D10, S4, C2×S4, S3×D5, D5×S4
Character table of D5×S4
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 5A | 5B | 6 | 10A | 10B | 10C | 10D | 15A | 15B | 20A | 20B | |
size | 1 | 3 | 5 | 6 | 15 | 30 | 8 | 6 | 30 | 2 | 2 | 40 | 6 | 6 | 12 | 12 | 16 | 16 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | -2 | 0 | -2 | 0 | -1 | 0 | 0 | 2 | 2 | 1 | 2 | 2 | 0 | 0 | -1 | -1 | 0 | 0 | orthogonal lifted from D6 |
ρ6 | 2 | 2 | 2 | 0 | 2 | 0 | -1 | 0 | 0 | 2 | 2 | -1 | 2 | 2 | 0 | 0 | -1 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | 0 | -2 | 0 | 0 | 2 | -2 | 0 | -1+√5/2 | -1-√5/2 | 0 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ8 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 2 | 0 | -1-√5/2 | -1+√5/2 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ9 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 2 | 0 | -1+√5/2 | -1-√5/2 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ10 | 2 | 2 | 0 | -2 | 0 | 0 | 2 | -2 | 0 | -1-√5/2 | -1+√5/2 | 0 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ11 | 3 | -1 | -3 | 1 | 1 | -1 | 0 | -1 | 1 | 3 | 3 | 0 | -1 | -1 | 1 | 1 | 0 | 0 | -1 | -1 | orthogonal lifted from C2×S4 |
ρ12 | 3 | -1 | 3 | 1 | -1 | 1 | 0 | -1 | -1 | 3 | 3 | 0 | -1 | -1 | 1 | 1 | 0 | 0 | -1 | -1 | orthogonal lifted from S4 |
ρ13 | 3 | -1 | 3 | -1 | -1 | -1 | 0 | 1 | 1 | 3 | 3 | 0 | -1 | -1 | -1 | -1 | 0 | 0 | 1 | 1 | orthogonal lifted from S4 |
ρ14 | 3 | -1 | -3 | -1 | 1 | 1 | 0 | 1 | -1 | 3 | 3 | 0 | -1 | -1 | -1 | -1 | 0 | 0 | 1 | 1 | orthogonal lifted from C2×S4 |
ρ15 | 4 | 4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | -1-√5 | -1+√5 | 0 | -1-√5 | -1+√5 | 0 | 0 | 1+√5/2 | 1-√5/2 | 0 | 0 | orthogonal lifted from S3×D5 |
ρ16 | 4 | 4 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | -1+√5 | -1-√5 | 0 | -1+√5 | -1-√5 | 0 | 0 | 1-√5/2 | 1+√5/2 | 0 | 0 | orthogonal lifted from S3×D5 |
ρ17 | 6 | -2 | 0 | 2 | 0 | 0 | 0 | -2 | 0 | -3-3√5/2 | -3+3√5/2 | 0 | 1+√5/2 | 1-√5/2 | -1-√5/2 | -1+√5/2 | 0 | 0 | 1+√5/2 | 1-√5/2 | orthogonal faithful |
ρ18 | 6 | -2 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | -3+3√5/2 | -3-3√5/2 | 0 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 0 | 0 | -1+√5/2 | -1-√5/2 | orthogonal faithful |
ρ19 | 6 | -2 | 0 | 2 | 0 | 0 | 0 | -2 | 0 | -3+3√5/2 | -3-3√5/2 | 0 | 1-√5/2 | 1+√5/2 | -1+√5/2 | -1-√5/2 | 0 | 0 | 1-√5/2 | 1+√5/2 | orthogonal faithful |
ρ20 | 6 | -2 | 0 | -2 | 0 | 0 | 0 | 2 | 0 | -3-3√5/2 | -3+3√5/2 | 0 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 0 | 0 | -1-√5/2 | -1+√5/2 | orthogonal faithful |
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
(1 5)(2 4)(6 7)(8 10)(11 13)(14 15)(16 20)(17 19)
(1 7)(2 8)(3 9)(4 10)(5 6)(11 17)(12 18)(13 19)(14 20)(15 16)
(1 16)(2 17)(3 18)(4 19)(5 20)(6 14)(7 15)(8 11)(9 12)(10 13)
(6 20 14)(7 16 15)(8 17 11)(9 18 12)(10 19 13)
(6 14)(7 15)(8 11)(9 12)(10 13)
G:=sub<Sym(20)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,5)(2,4)(6,7)(8,10)(11,13)(14,15)(16,20)(17,19), (1,7)(2,8)(3,9)(4,10)(5,6)(11,17)(12,18)(13,19)(14,20)(15,16), (1,16)(2,17)(3,18)(4,19)(5,20)(6,14)(7,15)(8,11)(9,12)(10,13), (6,20,14)(7,16,15)(8,17,11)(9,18,12)(10,19,13), (6,14)(7,15)(8,11)(9,12)(10,13)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,5)(2,4)(6,7)(8,10)(11,13)(14,15)(16,20)(17,19), (1,7)(2,8)(3,9)(4,10)(5,6)(11,17)(12,18)(13,19)(14,20)(15,16), (1,16)(2,17)(3,18)(4,19)(5,20)(6,14)(7,15)(8,11)(9,12)(10,13), (6,20,14)(7,16,15)(8,17,11)(9,18,12)(10,19,13), (6,14)(7,15)(8,11)(9,12)(10,13) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)], [(1,5),(2,4),(6,7),(8,10),(11,13),(14,15),(16,20),(17,19)], [(1,7),(2,8),(3,9),(4,10),(5,6),(11,17),(12,18),(13,19),(14,20),(15,16)], [(1,16),(2,17),(3,18),(4,19),(5,20),(6,14),(7,15),(8,11),(9,12),(10,13)], [(6,20,14),(7,16,15),(8,17,11),(9,18,12),(10,19,13)], [(6,14),(7,15),(8,11),(9,12),(10,13)]])
G:=TransitiveGroup(20,69);
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 5)(2 4)(6 9)(7 8)(11 14)(12 13)(16 17)(18 20)(21 24)(22 23)(26 27)(28 30)
(1 13)(2 14)(3 15)(4 11)(5 12)(16 22)(17 23)(18 24)(19 25)(20 21)
(6 30)(7 26)(8 27)(9 28)(10 29)(16 22)(17 23)(18 24)(19 25)(20 21)
(1 17 27)(2 18 28)(3 19 29)(4 20 30)(5 16 26)(6 11 21)(7 12 22)(8 13 23)(9 14 24)(10 15 25)
(1 13)(2 14)(3 15)(4 11)(5 12)(6 20)(7 16)(8 17)(9 18)(10 19)(21 30)(22 26)(23 27)(24 28)(25 29)
G:=sub<Sym(30)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,5)(2,4)(6,9)(7,8)(11,14)(12,13)(16,17)(18,20)(21,24)(22,23)(26,27)(28,30), (1,13)(2,14)(3,15)(4,11)(5,12)(16,22)(17,23)(18,24)(19,25)(20,21), (6,30)(7,26)(8,27)(9,28)(10,29)(16,22)(17,23)(18,24)(19,25)(20,21), (1,17,27)(2,18,28)(3,19,29)(4,20,30)(5,16,26)(6,11,21)(7,12,22)(8,13,23)(9,14,24)(10,15,25), (1,13)(2,14)(3,15)(4,11)(5,12)(6,20)(7,16)(8,17)(9,18)(10,19)(21,30)(22,26)(23,27)(24,28)(25,29)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,5)(2,4)(6,9)(7,8)(11,14)(12,13)(16,17)(18,20)(21,24)(22,23)(26,27)(28,30), (1,13)(2,14)(3,15)(4,11)(5,12)(16,22)(17,23)(18,24)(19,25)(20,21), (6,30)(7,26)(8,27)(9,28)(10,29)(16,22)(17,23)(18,24)(19,25)(20,21), (1,17,27)(2,18,28)(3,19,29)(4,20,30)(5,16,26)(6,11,21)(7,12,22)(8,13,23)(9,14,24)(10,15,25), (1,13)(2,14)(3,15)(4,11)(5,12)(6,20)(7,16)(8,17)(9,18)(10,19)(21,30)(22,26)(23,27)(24,28)(25,29) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,5),(2,4),(6,9),(7,8),(11,14),(12,13),(16,17),(18,20),(21,24),(22,23),(26,27),(28,30)], [(1,13),(2,14),(3,15),(4,11),(5,12),(16,22),(17,23),(18,24),(19,25),(20,21)], [(6,30),(7,26),(8,27),(9,28),(10,29),(16,22),(17,23),(18,24),(19,25),(20,21)], [(1,17,27),(2,18,28),(3,19,29),(4,20,30),(5,16,26),(6,11,21),(7,12,22),(8,13,23),(9,14,24),(10,15,25)], [(1,13),(2,14),(3,15),(4,11),(5,12),(6,20),(7,16),(8,17),(9,18),(10,19),(21,30),(22,26),(23,27),(24,28),(25,29)]])
G:=TransitiveGroup(30,54);
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 12)(2 11)(3 15)(4 14)(5 13)(6 28)(7 27)(8 26)(9 30)(10 29)(16 23)(17 22)(18 21)(19 25)(20 24)
(1 13)(2 14)(3 15)(4 11)(5 12)(16 22)(17 23)(18 24)(19 25)(20 21)
(6 30)(7 26)(8 27)(9 28)(10 29)(16 22)(17 23)(18 24)(19 25)(20 21)
(1 17 27)(2 18 28)(3 19 29)(4 20 30)(5 16 26)(6 11 21)(7 12 22)(8 13 23)(9 14 24)(10 15 25)
(6 21)(7 22)(8 23)(9 24)(10 25)(16 26)(17 27)(18 28)(19 29)(20 30)
G:=sub<Sym(30)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,12)(2,11)(3,15)(4,14)(5,13)(6,28)(7,27)(8,26)(9,30)(10,29)(16,23)(17,22)(18,21)(19,25)(20,24), (1,13)(2,14)(3,15)(4,11)(5,12)(16,22)(17,23)(18,24)(19,25)(20,21), (6,30)(7,26)(8,27)(9,28)(10,29)(16,22)(17,23)(18,24)(19,25)(20,21), (1,17,27)(2,18,28)(3,19,29)(4,20,30)(5,16,26)(6,11,21)(7,12,22)(8,13,23)(9,14,24)(10,15,25), (6,21)(7,22)(8,23)(9,24)(10,25)(16,26)(17,27)(18,28)(19,29)(20,30)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,12)(2,11)(3,15)(4,14)(5,13)(6,28)(7,27)(8,26)(9,30)(10,29)(16,23)(17,22)(18,21)(19,25)(20,24), (1,13)(2,14)(3,15)(4,11)(5,12)(16,22)(17,23)(18,24)(19,25)(20,21), (6,30)(7,26)(8,27)(9,28)(10,29)(16,22)(17,23)(18,24)(19,25)(20,21), (1,17,27)(2,18,28)(3,19,29)(4,20,30)(5,16,26)(6,11,21)(7,12,22)(8,13,23)(9,14,24)(10,15,25), (6,21)(7,22)(8,23)(9,24)(10,25)(16,26)(17,27)(18,28)(19,29)(20,30) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,12),(2,11),(3,15),(4,14),(5,13),(6,28),(7,27),(8,26),(9,30),(10,29),(16,23),(17,22),(18,21),(19,25),(20,24)], [(1,13),(2,14),(3,15),(4,11),(5,12),(16,22),(17,23),(18,24),(19,25),(20,21)], [(6,30),(7,26),(8,27),(9,28),(10,29),(16,22),(17,23),(18,24),(19,25),(20,21)], [(1,17,27),(2,18,28),(3,19,29),(4,20,30),(5,16,26),(6,11,21),(7,12,22),(8,13,23),(9,14,24),(10,15,25)], [(6,21),(7,22),(8,23),(9,24),(10,25),(16,26),(17,27),(18,28),(19,29),(20,30)]])
G:=TransitiveGroup(30,59);
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 5)(2 4)(6 9)(7 8)(11 14)(12 13)(16 17)(18 20)(21 24)(22 23)(26 27)(28 30)
(1 13)(2 14)(3 15)(4 11)(5 12)(16 22)(17 23)(18 24)(19 25)(20 21)
(6 30)(7 26)(8 27)(9 28)(10 29)(16 22)(17 23)(18 24)(19 25)(20 21)
(1 17 27)(2 18 28)(3 19 29)(4 20 30)(5 16 26)(6 11 21)(7 12 22)(8 13 23)(9 14 24)(10 15 25)
(6 21)(7 22)(8 23)(9 24)(10 25)(16 26)(17 27)(18 28)(19 29)(20 30)
G:=sub<Sym(30)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,5)(2,4)(6,9)(7,8)(11,14)(12,13)(16,17)(18,20)(21,24)(22,23)(26,27)(28,30), (1,13)(2,14)(3,15)(4,11)(5,12)(16,22)(17,23)(18,24)(19,25)(20,21), (6,30)(7,26)(8,27)(9,28)(10,29)(16,22)(17,23)(18,24)(19,25)(20,21), (1,17,27)(2,18,28)(3,19,29)(4,20,30)(5,16,26)(6,11,21)(7,12,22)(8,13,23)(9,14,24)(10,15,25), (6,21)(7,22)(8,23)(9,24)(10,25)(16,26)(17,27)(18,28)(19,29)(20,30)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,5)(2,4)(6,9)(7,8)(11,14)(12,13)(16,17)(18,20)(21,24)(22,23)(26,27)(28,30), (1,13)(2,14)(3,15)(4,11)(5,12)(16,22)(17,23)(18,24)(19,25)(20,21), (6,30)(7,26)(8,27)(9,28)(10,29)(16,22)(17,23)(18,24)(19,25)(20,21), (1,17,27)(2,18,28)(3,19,29)(4,20,30)(5,16,26)(6,11,21)(7,12,22)(8,13,23)(9,14,24)(10,15,25), (6,21)(7,22)(8,23)(9,24)(10,25)(16,26)(17,27)(18,28)(19,29)(20,30) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,5),(2,4),(6,9),(7,8),(11,14),(12,13),(16,17),(18,20),(21,24),(22,23),(26,27),(28,30)], [(1,13),(2,14),(3,15),(4,11),(5,12),(16,22),(17,23),(18,24),(19,25),(20,21)], [(6,30),(7,26),(8,27),(9,28),(10,29),(16,22),(17,23),(18,24),(19,25),(20,21)], [(1,17,27),(2,18,28),(3,19,29),(4,20,30),(5,16,26),(6,11,21),(7,12,22),(8,13,23),(9,14,24),(10,15,25)], [(6,21),(7,22),(8,23),(9,24),(10,25),(16,26),(17,27),(18,28),(19,29),(20,30)]])
G:=TransitiveGroup(30,62);
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)
(1 12)(2 11)(3 15)(4 14)(5 13)(6 28)(7 27)(8 26)(9 30)(10 29)(16 23)(17 22)(18 21)(19 25)(20 24)
(1 13)(2 14)(3 15)(4 11)(5 12)(16 22)(17 23)(18 24)(19 25)(20 21)
(6 30)(7 26)(8 27)(9 28)(10 29)(16 22)(17 23)(18 24)(19 25)(20 21)
(1 17 27)(2 18 28)(3 19 29)(4 20 30)(5 16 26)(6 11 21)(7 12 22)(8 13 23)(9 14 24)(10 15 25)
(1 13)(2 14)(3 15)(4 11)(5 12)(6 20)(7 16)(8 17)(9 18)(10 19)(21 30)(22 26)(23 27)(24 28)(25 29)
G:=sub<Sym(30)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,12)(2,11)(3,15)(4,14)(5,13)(6,28)(7,27)(8,26)(9,30)(10,29)(16,23)(17,22)(18,21)(19,25)(20,24), (1,13)(2,14)(3,15)(4,11)(5,12)(16,22)(17,23)(18,24)(19,25)(20,21), (6,30)(7,26)(8,27)(9,28)(10,29)(16,22)(17,23)(18,24)(19,25)(20,21), (1,17,27)(2,18,28)(3,19,29)(4,20,30)(5,16,26)(6,11,21)(7,12,22)(8,13,23)(9,14,24)(10,15,25), (1,13)(2,14)(3,15)(4,11)(5,12)(6,20)(7,16)(8,17)(9,18)(10,19)(21,30)(22,26)(23,27)(24,28)(25,29)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30), (1,12)(2,11)(3,15)(4,14)(5,13)(6,28)(7,27)(8,26)(9,30)(10,29)(16,23)(17,22)(18,21)(19,25)(20,24), (1,13)(2,14)(3,15)(4,11)(5,12)(16,22)(17,23)(18,24)(19,25)(20,21), (6,30)(7,26)(8,27)(9,28)(10,29)(16,22)(17,23)(18,24)(19,25)(20,21), (1,17,27)(2,18,28)(3,19,29)(4,20,30)(5,16,26)(6,11,21)(7,12,22)(8,13,23)(9,14,24)(10,15,25), (1,13)(2,14)(3,15)(4,11)(5,12)(6,20)(7,16)(8,17)(9,18)(10,19)(21,30)(22,26)(23,27)(24,28)(25,29) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30)], [(1,12),(2,11),(3,15),(4,14),(5,13),(6,28),(7,27),(8,26),(9,30),(10,29),(16,23),(17,22),(18,21),(19,25),(20,24)], [(1,13),(2,14),(3,15),(4,11),(5,12),(16,22),(17,23),(18,24),(19,25),(20,21)], [(6,30),(7,26),(8,27),(9,28),(10,29),(16,22),(17,23),(18,24),(19,25),(20,21)], [(1,17,27),(2,18,28),(3,19,29),(4,20,30),(5,16,26),(6,11,21),(7,12,22),(8,13,23),(9,14,24),(10,15,25)], [(1,13),(2,14),(3,15),(4,11),(5,12),(6,20),(7,16),(8,17),(9,18),(10,19),(21,30),(22,26),(23,27),(24,28),(25,29)]])
G:=TransitiveGroup(30,63);
D5×S4 is a maximal quotient of
CSU2(𝔽3)⋊D5 Dic5.6S4 Dic5.7S4 GL2(𝔽3)⋊D5 D10.1S4 D10.2S4 A4⋊Dic10 Dic5⋊2S4 Dic5⋊S4 D10⋊S4 A4⋊D20
Matrix representation of D5×S4 ►in GL5(𝔽61)
0 | 1 | 0 | 0 | 0 |
60 | 17 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 60 | 0 | 0 | 0 |
60 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 |
0 | 0 | 0 | 60 | 0 |
0 | 0 | 0 | 0 | 60 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 1 |
0 | 0 | 0 | 60 | 0 |
0 | 0 | 1 | 60 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 60 |
0 | 0 | 1 | 0 | 60 |
0 | 0 | 0 | 0 | 60 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
60 | 0 | 0 | 0 | 0 |
0 | 60 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(61))| [0,60,0,0,0,1,17,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[0,60,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,60,0,0,0,0,0,60],[1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,60,60,60,0,0,1,0,0],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,60,60,60],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0],[60,0,0,0,0,0,60,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1] >;
D5×S4 in GAP, Magma, Sage, TeX
D_5\times S_4
% in TeX
G:=Group("D5xS4");
// GroupNames label
G:=SmallGroup(240,194);
// by ID
G=gap.SmallGroup(240,194);
# by ID
G:=PCGroup([6,-2,-2,-3,-5,-2,2,80,1155,1810,916,1091,1637]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^5=b^2=c^2=d^2=e^3=f^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,e*c*e^-1=f*c*f=c*d=d*c,e*d*e^-1=c,d*f=f*d,f*e*f=e^-1>;
// generators/relations
Export