extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC10).1(C4xS3) = C5:C8.D6 | φ: C4xS3/C3 → C2xC4 ⊆ Aut C2xC10 | 240 | 8 | (C2xC10).1(C4xS3) | 480,1003 |
(C2xC10).2(C4xS3) = D15:C8:C2 | φ: C4xS3/C3 → C2xC4 ⊆ Aut C2xC10 | 240 | 8 | (C2xC10).2(C4xS3) | 480,1005 |
(C2xC10).3(C4xS3) = D10.20D12 | φ: C4xS3/S3 → C4 ⊆ Aut C2xC10 | 120 | | (C2xC10).3(C4xS3) | 480,243 |
(C2xC10).4(C4xS3) = Dic3xC5:C8 | φ: C4xS3/S3 → C4 ⊆ Aut C2xC10 | 480 | | (C2xC10).4(C4xS3) | 480,244 |
(C2xC10).5(C4xS3) = C30.M4(2) | φ: C4xS3/S3 → C4 ⊆ Aut C2xC10 | 480 | | (C2xC10).5(C4xS3) | 480,245 |
(C2xC10).6(C4xS3) = Dic5.22D12 | φ: C4xS3/S3 → C4 ⊆ Aut C2xC10 | 240 | | (C2xC10).6(C4xS3) | 480,246 |
(C2xC10).7(C4xS3) = D30:C8 | φ: C4xS3/S3 → C4 ⊆ Aut C2xC10 | 240 | | (C2xC10).7(C4xS3) | 480,247 |
(C2xC10).8(C4xS3) = D10.D12 | φ: C4xS3/S3 → C4 ⊆ Aut C2xC10 | 120 | 8- | (C2xC10).8(C4xS3) | 480,248 |
(C2xC10).9(C4xS3) = D10.4D12 | φ: C4xS3/S3 → C4 ⊆ Aut C2xC10 | 120 | 8+ | (C2xC10).9(C4xS3) | 480,249 |
(C2xC10).10(C4xS3) = Dic5.D12 | φ: C4xS3/S3 → C4 ⊆ Aut C2xC10 | 120 | 8+ | (C2xC10).10(C4xS3) | 480,250 |
(C2xC10).11(C4xS3) = Dic5.4D12 | φ: C4xS3/S3 → C4 ⊆ Aut C2xC10 | 240 | 8- | (C2xC10).11(C4xS3) | 480,251 |
(C2xC10).12(C4xS3) = C30.4M4(2) | φ: C4xS3/S3 → C4 ⊆ Aut C2xC10 | 480 | | (C2xC10).12(C4xS3) | 480,252 |
(C2xC10).13(C4xS3) = Dic15:C8 | φ: C4xS3/S3 → C4 ⊆ Aut C2xC10 | 480 | | (C2xC10).13(C4xS3) | 480,253 |
(C2xC10).14(C4xS3) = C2xDic3xF5 | φ: C4xS3/S3 → C4 ⊆ Aut C2xC10 | 120 | | (C2xC10).14(C4xS3) | 480,998 |
(C2xC10).15(C4xS3) = C22:F5.S3 | φ: C4xS3/S3 → C4 ⊆ Aut C2xC10 | 120 | 8- | (C2xC10).15(C4xS3) | 480,999 |
(C2xC10).16(C4xS3) = C2xD6:F5 | φ: C4xS3/S3 → C4 ⊆ Aut C2xC10 | 120 | | (C2xC10).16(C4xS3) | 480,1000 |
(C2xC10).17(C4xS3) = C2xDic3:F5 | φ: C4xS3/S3 → C4 ⊆ Aut C2xC10 | 120 | | (C2xC10).17(C4xS3) | 480,1001 |
(C2xC10).18(C4xS3) = C2xS3xC5:C8 | φ: C4xS3/S3 → C4 ⊆ Aut C2xC10 | 240 | | (C2xC10).18(C4xS3) | 480,1002 |
(C2xC10).19(C4xS3) = S3xC22.F5 | φ: C4xS3/S3 → C4 ⊆ Aut C2xC10 | 120 | 8- | (C2xC10).19(C4xS3) | 480,1004 |
(C2xC10).20(C4xS3) = C2xD15:C8 | φ: C4xS3/S3 → C4 ⊆ Aut C2xC10 | 240 | | (C2xC10).20(C4xS3) | 480,1006 |
(C2xC10).21(C4xS3) = D15:2M4(2) | φ: C4xS3/S3 → C4 ⊆ Aut C2xC10 | 120 | 8+ | (C2xC10).21(C4xS3) | 480,1007 |
(C2xC10).22(C4xS3) = C2xD6.F5 | φ: C4xS3/S3 → C4 ⊆ Aut C2xC10 | 240 | | (C2xC10).22(C4xS3) | 480,1008 |
(C2xC10).23(C4xS3) = C2xDic3.F5 | φ: C4xS3/S3 → C4 ⊆ Aut C2xC10 | 240 | | (C2xC10).23(C4xS3) | 480,1009 |
(C2xC10).24(C4xS3) = C60.29D4 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC10 | 120 | 4+ | (C2xC10).24(C4xS3) | 480,36 |
(C2xC10).25(C4xS3) = C60.31D4 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC10 | 240 | 4- | (C2xC10).25(C4xS3) | 480,39 |
(C2xC10).26(C4xS3) = C15:9(C23:C4) | φ: C4xS3/C6 → C22 ⊆ Aut C2xC10 | 120 | 4 | (C2xC10).26(C4xS3) | 480,73 |
(C2xC10).27(C4xS3) = C23.6D30 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC10 | 120 | 4 | (C2xC10).27(C4xS3) | 480,166 |
(C2xC10).28(C4xS3) = M4(2):D15 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC10 | 120 | 4+ | (C2xC10).28(C4xS3) | 480,183 |
(C2xC10).29(C4xS3) = C4.D60 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC10 | 240 | 4- | (C2xC10).29(C4xS3) | 480,184 |
(C2xC10).30(C4xS3) = D12.2Dic5 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC10 | 240 | 4 | (C2xC10).30(C4xS3) | 480,362 |
(C2xC10).31(C4xS3) = D12.Dic5 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC10 | 240 | 4 | (C2xC10).31(C4xS3) | 480,364 |
(C2xC10).32(C4xS3) = D60.5C4 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC10 | 240 | 4 | (C2xC10).32(C4xS3) | 480,366 |
(C2xC10).33(C4xS3) = D15:4M4(2) | φ: C4xS3/C6 → C22 ⊆ Aut C2xC10 | 120 | 4 | (C2xC10).33(C4xS3) | 480,368 |
(C2xC10).34(C4xS3) = C23.48(S3xD5) | φ: C4xS3/C6 → C22 ⊆ Aut C2xC10 | 240 | | (C2xC10).34(C4xS3) | 480,608 |
(C2xC10).35(C4xS3) = C23.15D30 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC10 | 240 | | (C2xC10).35(C4xS3) | 480,842 |
(C2xC10).36(C4xS3) = M4(2)xD15 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC10 | 120 | 4 | (C2xC10).36(C4xS3) | 480,871 |
(C2xC10).37(C4xS3) = D60.3C4 | φ: C4xS3/C6 → C22 ⊆ Aut C2xC10 | 240 | 4 | (C2xC10).37(C4xS3) | 480,872 |
(C2xC10).38(C4xS3) = C5xD12.C4 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC10 | 240 | 4 | (C2xC10).38(C4xS3) | 480,786 |
(C2xC10).39(C4xS3) = Dic15:4C8 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC10 | 480 | | (C2xC10).39(C4xS3) | 480,27 |
(C2xC10).40(C4xS3) = C30.23C42 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC10 | 480 | | (C2xC10).40(C4xS3) | 480,30 |
(C2xC10).41(C4xS3) = D30:4C8 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC10 | 240 | | (C2xC10).41(C4xS3) | 480,33 |
(C2xC10).42(C4xS3) = C60.14Q8 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC10 | 480 | | (C2xC10).42(C4xS3) | 480,59 |
(C2xC10).43(C4xS3) = C30.24C42 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC10 | 480 | | (C2xC10).43(C4xS3) | 480,70 |
(C2xC10).44(C4xS3) = C2xD15:2C8 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC10 | 240 | | (C2xC10).44(C4xS3) | 480,365 |
(C2xC10).45(C4xS3) = D60.4C4 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC10 | 240 | 4 | (C2xC10).45(C4xS3) | 480,367 |
(C2xC10).46(C4xS3) = C2xD30.5C4 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC10 | 240 | | (C2xC10).46(C4xS3) | 480,371 |
(C2xC10).47(C4xS3) = C2xDic3xDic5 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC10 | 480 | | (C2xC10).47(C4xS3) | 480,603 |
(C2xC10).48(C4xS3) = C2xD30:4C4 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC10 | 240 | | (C2xC10).48(C4xS3) | 480,616 |
(C2xC10).49(C4xS3) = C2xDic15:5C4 | φ: C4xS3/Dic3 → C2 ⊆ Aut C2xC10 | 480 | | (C2xC10).49(C4xS3) | 480,620 |
(C2xC10).50(C4xS3) = C5xC8oD12 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC10 | 240 | 2 | (C2xC10).50(C4xS3) | 480,780 |
(C2xC10).51(C4xS3) = C8xDic15 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC10 | 480 | | (C2xC10).51(C4xS3) | 480,173 |
(C2xC10).52(C4xS3) = C60.26Q8 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC10 | 480 | | (C2xC10).52(C4xS3) | 480,174 |
(C2xC10).53(C4xS3) = C120:13C4 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC10 | 480 | | (C2xC10).53(C4xS3) | 480,175 |
(C2xC10).54(C4xS3) = D30:3C8 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC10 | 240 | | (C2xC10).54(C4xS3) | 480,180 |
(C2xC10).55(C4xS3) = C30.29C42 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC10 | 480 | | (C2xC10).55(C4xS3) | 480,191 |
(C2xC10).56(C4xS3) = C2xC8xD15 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC10 | 240 | | (C2xC10).56(C4xS3) | 480,864 |
(C2xC10).57(C4xS3) = C2xC40:S3 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC10 | 240 | | (C2xC10).57(C4xS3) | 480,865 |
(C2xC10).58(C4xS3) = D60.6C4 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC10 | 240 | 2 | (C2xC10).58(C4xS3) | 480,866 |
(C2xC10).59(C4xS3) = C2xC4xDic15 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC10 | 480 | | (C2xC10).59(C4xS3) | 480,887 |
(C2xC10).60(C4xS3) = C2xC30.4Q8 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC10 | 480 | | (C2xC10).60(C4xS3) | 480,888 |
(C2xC10).61(C4xS3) = C2xD30:3C4 | φ: C4xS3/C12 → C2 ⊆ Aut C2xC10 | 240 | | (C2xC10).61(C4xS3) | 480,892 |
(C2xC10).62(C4xS3) = C5xC23.6D6 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC10 | 120 | 4 | (C2xC10).62(C4xS3) | 480,125 |
(C2xC10).63(C4xS3) = C5xC12.46D4 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC10 | 120 | 4 | (C2xC10).63(C4xS3) | 480,142 |
(C2xC10).64(C4xS3) = C5xC12.47D4 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC10 | 240 | 4 | (C2xC10).64(C4xS3) | 480,143 |
(C2xC10).65(C4xS3) = C5xC23.16D6 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC10 | 240 | | (C2xC10).65(C4xS3) | 480,756 |
(C2xC10).66(C4xS3) = C5xS3xM4(2) | φ: C4xS3/D6 → C2 ⊆ Aut C2xC10 | 120 | 4 | (C2xC10).66(C4xS3) | 480,785 |
(C2xC10).67(C4xS3) = Dic3xC5:2C8 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC10 | 480 | | (C2xC10).67(C4xS3) | 480,26 |
(C2xC10).68(C4xS3) = C30.22C42 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC10 | 480 | | (C2xC10).68(C4xS3) | 480,29 |
(C2xC10).69(C4xS3) = C60.94D4 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC10 | 240 | | (C2xC10).69(C4xS3) | 480,32 |
(C2xC10).70(C4xS3) = C20.5D12 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC10 | 120 | 4 | (C2xC10).70(C4xS3) | 480,35 |
(C2xC10).71(C4xS3) = C60.54D4 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC10 | 240 | 4 | (C2xC10).71(C4xS3) | 480,38 |
(C2xC10).72(C4xS3) = C60.15Q8 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC10 | 480 | | (C2xC10).72(C4xS3) | 480,60 |
(C2xC10).73(C4xS3) = C15:8(C23:C4) | φ: C4xS3/D6 → C2 ⊆ Aut C2xC10 | 120 | 4 | (C2xC10).73(C4xS3) | 480,72 |
(C2xC10).74(C4xS3) = C2xS3xC5:2C8 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC10 | 240 | | (C2xC10).74(C4xS3) | 480,361 |
(C2xC10).75(C4xS3) = S3xC4.Dic5 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC10 | 120 | 4 | (C2xC10).75(C4xS3) | 480,363 |
(C2xC10).76(C4xS3) = C2xD6.Dic5 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC10 | 240 | | (C2xC10).76(C4xS3) | 480,370 |
(C2xC10).77(C4xS3) = C23.26(S3xD5) | φ: C4xS3/D6 → C2 ⊆ Aut C2xC10 | 240 | | (C2xC10).77(C4xS3) | 480,605 |
(C2xC10).78(C4xS3) = C2xD6:Dic5 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC10 | 240 | | (C2xC10).78(C4xS3) | 480,614 |
(C2xC10).79(C4xS3) = C2xC6.Dic10 | φ: C4xS3/D6 → C2 ⊆ Aut C2xC10 | 480 | | (C2xC10).79(C4xS3) | 480,621 |
(C2xC10).80(C4xS3) = Dic3xC40 | central extension (φ=1) | 480 | | (C2xC10).80(C4xS3) | 480,132 |
(C2xC10).81(C4xS3) = C5xDic3:C8 | central extension (φ=1) | 480 | | (C2xC10).81(C4xS3) | 480,133 |
(C2xC10).82(C4xS3) = C5xC24:C4 | central extension (φ=1) | 480 | | (C2xC10).82(C4xS3) | 480,134 |
(C2xC10).83(C4xS3) = C5xD6:C8 | central extension (φ=1) | 240 | | (C2xC10).83(C4xS3) | 480,139 |
(C2xC10).84(C4xS3) = C5xC6.C42 | central extension (φ=1) | 480 | | (C2xC10).84(C4xS3) | 480,150 |
(C2xC10).85(C4xS3) = S3xC2xC40 | central extension (φ=1) | 240 | | (C2xC10).85(C4xS3) | 480,778 |
(C2xC10).86(C4xS3) = C10xC8:S3 | central extension (φ=1) | 240 | | (C2xC10).86(C4xS3) | 480,779 |
(C2xC10).87(C4xS3) = Dic3xC2xC20 | central extension (φ=1) | 480 | | (C2xC10).87(C4xS3) | 480,801 |
(C2xC10).88(C4xS3) = C10xDic3:C4 | central extension (φ=1) | 480 | | (C2xC10).88(C4xS3) | 480,802 |
(C2xC10).89(C4xS3) = C10xD6:C4 | central extension (φ=1) | 240 | | (C2xC10).89(C4xS3) | 480,806 |