Copied to
clipboard

G = C2xD6:F5order 480 = 25·3·5

Direct product of C2 and D6:F5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2xD6:F5, D10.21D12, D5:(D6:C4), C10:(D6:C4), (C2xF5):2D6, D6:5(C2xF5), C30:(C22:C4), D30:5(C2xC4), (C6xD5).30D4, D5.3(C2xD12), C6:1(C22:F5), (C22xS3):2F5, (C22xF5):2S3, (C6xF5):2C22, D10.26(C4xS3), (C22xD15):4C4, C22.18(S3xF5), C6.19(C22xF5), C30.19(C22xC4), (C22xD5).75D6, (C6xD5).31C23, D10.25(C3:D4), D10.34(C22xS3), C5:(C2xD6:C4), (C2xS3xD5):4C4, (C2xC6xF5):1C2, (S3xC2xC10):3C4, C3:2(C2xC22:F5), C2.21(C2xS3xF5), C15:1(C2xC22:C4), C10.19(S3xC2xC4), (S3xC10):5(C2xC4), (C22xC3:F5):1C2, (C2xC3:F5):2C22, (C3xD5):(C22:C4), (C3xD5).4(C2xD4), D5.3(C2xC3:D4), (C2xC6).19(C2xF5), (C22xS3xD5).4C2, (C2xC10).16(C4xS3), (C2xC30).14(C2xC4), (C6xD5).24(C2xC4), (C2xS3xD5).18C22, (D5xC2xC6).68C22, SmallGroup(480,1000)

Series: Derived Chief Lower central Upper central

C1C30 — C2xD6:F5
C1C5C15C3xD5C6xD5C6xF5D6:F5 — C2xD6:F5
C15C30 — C2xD6:F5
C1C22

Generators and relations for C2xD6:F5
 G = < a,b,c,d,e | a2=b6=c2=d5=e4=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece-1=b3c, ede-1=d3 >

Subgroups: 1716 in 264 conjugacy classes, 70 normal (30 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C5, S3, C6, C6, C6, C2xC4, C23, D5, D5, D5, C10, C10, C10, Dic3, C12, D6, D6, C2xC6, C2xC6, C15, C22:C4, C22xC4, C24, F5, D10, D10, D10, C2xC10, C2xC10, C2xDic3, C2xC12, C22xS3, C22xS3, C22xC6, C5xS3, C3xD5, C3xD5, D15, C30, C30, C2xC22:C4, C2xF5, C2xF5, C22xD5, C22xD5, C22xC10, D6:C4, C22xDic3, C22xC12, S3xC23, C3xF5, C3:F5, S3xD5, C6xD5, C6xD5, S3xC10, S3xC10, D30, D30, C2xC30, C22:F5, C22xF5, C22xF5, C23xD5, C2xD6:C4, C6xF5, C6xF5, C2xC3:F5, C2xC3:F5, C2xS3xD5, C2xS3xD5, D5xC2xC6, S3xC2xC10, C22xD15, C2xC22:F5, D6:F5, C2xC6xF5, C22xC3:F5, C22xS3xD5, C2xD6:F5
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, C23, D6, C22:C4, C22xC4, C2xD4, F5, C4xS3, D12, C3:D4, C22xS3, C2xC22:C4, C2xF5, D6:C4, S3xC2xC4, C2xD12, C2xC3:D4, C22:F5, C22xF5, C2xD6:C4, S3xF5, C2xC22:F5, D6:F5, C2xS3xF5, C2xD6:F5

Smallest permutation representation of C2xD6:F5
On 120 points
Generators in S120
(1 55)(2 56)(3 57)(4 58)(5 59)(6 60)(7 109)(8 110)(9 111)(10 112)(11 113)(12 114)(13 105)(14 106)(15 107)(16 108)(17 103)(18 104)(19 101)(20 102)(21 97)(22 98)(23 99)(24 100)(25 91)(26 92)(27 93)(28 94)(29 95)(30 96)(31 69)(32 70)(33 71)(34 72)(35 67)(36 68)(37 65)(38 66)(39 61)(40 62)(41 63)(42 64)(43 76)(44 77)(45 78)(46 73)(47 74)(48 75)(49 82)(50 83)(51 84)(52 79)(53 80)(54 81)(85 118)(86 119)(87 120)(88 115)(89 116)(90 117)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)
(1 115)(2 120)(3 119)(4 118)(5 117)(6 116)(7 53)(8 52)(9 51)(10 50)(11 49)(12 54)(13 47)(14 46)(15 45)(16 44)(17 43)(18 48)(19 36)(20 35)(21 34)(22 33)(23 32)(24 31)(25 40)(26 39)(27 38)(28 37)(29 42)(30 41)(55 88)(56 87)(57 86)(58 85)(59 90)(60 89)(61 92)(62 91)(63 96)(64 95)(65 94)(66 93)(67 102)(68 101)(69 100)(70 99)(71 98)(72 97)(73 106)(74 105)(75 104)(76 103)(77 108)(78 107)(79 110)(80 109)(81 114)(82 113)(83 112)(84 111)
(1 39 51 32 47)(2 40 52 33 48)(3 41 53 34 43)(4 42 54 35 44)(5 37 49 36 45)(6 38 50 31 46)(7 21 17 119 30)(8 22 18 120 25)(9 23 13 115 26)(10 24 14 116 27)(11 19 15 117 28)(12 20 16 118 29)(55 61 84 70 74)(56 62 79 71 75)(57 63 80 72 76)(58 64 81 67 77)(59 65 82 68 78)(60 66 83 69 73)(85 95 114 102 108)(86 96 109 97 103)(87 91 110 98 104)(88 92 111 99 105)(89 93 112 100 106)(90 94 113 101 107)
(1 116 4 119)(2 117 5 120)(3 118 6 115)(7 47 24 42)(8 48 19 37)(9 43 20 38)(10 44 21 39)(11 45 22 40)(12 46 23 41)(13 34 29 50)(14 35 30 51)(15 36 25 52)(16 31 26 53)(17 32 27 54)(18 33 28 49)(55 89 58 86)(56 90 59 87)(57 85 60 88)(61 112 77 97)(62 113 78 98)(63 114 73 99)(64 109 74 100)(65 110 75 101)(66 111 76 102)(67 96 84 106)(68 91 79 107)(69 92 80 108)(70 93 81 103)(71 94 82 104)(72 95 83 105)

G:=sub<Sym(120)| (1,55)(2,56)(3,57)(4,58)(5,59)(6,60)(7,109)(8,110)(9,111)(10,112)(11,113)(12,114)(13,105)(14,106)(15,107)(16,108)(17,103)(18,104)(19,101)(20,102)(21,97)(22,98)(23,99)(24,100)(25,91)(26,92)(27,93)(28,94)(29,95)(30,96)(31,69)(32,70)(33,71)(34,72)(35,67)(36,68)(37,65)(38,66)(39,61)(40,62)(41,63)(42,64)(43,76)(44,77)(45,78)(46,73)(47,74)(48,75)(49,82)(50,83)(51,84)(52,79)(53,80)(54,81)(85,118)(86,119)(87,120)(88,115)(89,116)(90,117), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120), (1,115)(2,120)(3,119)(4,118)(5,117)(6,116)(7,53)(8,52)(9,51)(10,50)(11,49)(12,54)(13,47)(14,46)(15,45)(16,44)(17,43)(18,48)(19,36)(20,35)(21,34)(22,33)(23,32)(24,31)(25,40)(26,39)(27,38)(28,37)(29,42)(30,41)(55,88)(56,87)(57,86)(58,85)(59,90)(60,89)(61,92)(62,91)(63,96)(64,95)(65,94)(66,93)(67,102)(68,101)(69,100)(70,99)(71,98)(72,97)(73,106)(74,105)(75,104)(76,103)(77,108)(78,107)(79,110)(80,109)(81,114)(82,113)(83,112)(84,111), (1,39,51,32,47)(2,40,52,33,48)(3,41,53,34,43)(4,42,54,35,44)(5,37,49,36,45)(6,38,50,31,46)(7,21,17,119,30)(8,22,18,120,25)(9,23,13,115,26)(10,24,14,116,27)(11,19,15,117,28)(12,20,16,118,29)(55,61,84,70,74)(56,62,79,71,75)(57,63,80,72,76)(58,64,81,67,77)(59,65,82,68,78)(60,66,83,69,73)(85,95,114,102,108)(86,96,109,97,103)(87,91,110,98,104)(88,92,111,99,105)(89,93,112,100,106)(90,94,113,101,107), (1,116,4,119)(2,117,5,120)(3,118,6,115)(7,47,24,42)(8,48,19,37)(9,43,20,38)(10,44,21,39)(11,45,22,40)(12,46,23,41)(13,34,29,50)(14,35,30,51)(15,36,25,52)(16,31,26,53)(17,32,27,54)(18,33,28,49)(55,89,58,86)(56,90,59,87)(57,85,60,88)(61,112,77,97)(62,113,78,98)(63,114,73,99)(64,109,74,100)(65,110,75,101)(66,111,76,102)(67,96,84,106)(68,91,79,107)(69,92,80,108)(70,93,81,103)(71,94,82,104)(72,95,83,105)>;

G:=Group( (1,55)(2,56)(3,57)(4,58)(5,59)(6,60)(7,109)(8,110)(9,111)(10,112)(11,113)(12,114)(13,105)(14,106)(15,107)(16,108)(17,103)(18,104)(19,101)(20,102)(21,97)(22,98)(23,99)(24,100)(25,91)(26,92)(27,93)(28,94)(29,95)(30,96)(31,69)(32,70)(33,71)(34,72)(35,67)(36,68)(37,65)(38,66)(39,61)(40,62)(41,63)(42,64)(43,76)(44,77)(45,78)(46,73)(47,74)(48,75)(49,82)(50,83)(51,84)(52,79)(53,80)(54,81)(85,118)(86,119)(87,120)(88,115)(89,116)(90,117), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120), (1,115)(2,120)(3,119)(4,118)(5,117)(6,116)(7,53)(8,52)(9,51)(10,50)(11,49)(12,54)(13,47)(14,46)(15,45)(16,44)(17,43)(18,48)(19,36)(20,35)(21,34)(22,33)(23,32)(24,31)(25,40)(26,39)(27,38)(28,37)(29,42)(30,41)(55,88)(56,87)(57,86)(58,85)(59,90)(60,89)(61,92)(62,91)(63,96)(64,95)(65,94)(66,93)(67,102)(68,101)(69,100)(70,99)(71,98)(72,97)(73,106)(74,105)(75,104)(76,103)(77,108)(78,107)(79,110)(80,109)(81,114)(82,113)(83,112)(84,111), (1,39,51,32,47)(2,40,52,33,48)(3,41,53,34,43)(4,42,54,35,44)(5,37,49,36,45)(6,38,50,31,46)(7,21,17,119,30)(8,22,18,120,25)(9,23,13,115,26)(10,24,14,116,27)(11,19,15,117,28)(12,20,16,118,29)(55,61,84,70,74)(56,62,79,71,75)(57,63,80,72,76)(58,64,81,67,77)(59,65,82,68,78)(60,66,83,69,73)(85,95,114,102,108)(86,96,109,97,103)(87,91,110,98,104)(88,92,111,99,105)(89,93,112,100,106)(90,94,113,101,107), (1,116,4,119)(2,117,5,120)(3,118,6,115)(7,47,24,42)(8,48,19,37)(9,43,20,38)(10,44,21,39)(11,45,22,40)(12,46,23,41)(13,34,29,50)(14,35,30,51)(15,36,25,52)(16,31,26,53)(17,32,27,54)(18,33,28,49)(55,89,58,86)(56,90,59,87)(57,85,60,88)(61,112,77,97)(62,113,78,98)(63,114,73,99)(64,109,74,100)(65,110,75,101)(66,111,76,102)(67,96,84,106)(68,91,79,107)(69,92,80,108)(70,93,81,103)(71,94,82,104)(72,95,83,105) );

G=PermutationGroup([[(1,55),(2,56),(3,57),(4,58),(5,59),(6,60),(7,109),(8,110),(9,111),(10,112),(11,113),(12,114),(13,105),(14,106),(15,107),(16,108),(17,103),(18,104),(19,101),(20,102),(21,97),(22,98),(23,99),(24,100),(25,91),(26,92),(27,93),(28,94),(29,95),(30,96),(31,69),(32,70),(33,71),(34,72),(35,67),(36,68),(37,65),(38,66),(39,61),(40,62),(41,63),(42,64),(43,76),(44,77),(45,78),(46,73),(47,74),(48,75),(49,82),(50,83),(51,84),(52,79),(53,80),(54,81),(85,118),(86,119),(87,120),(88,115),(89,116),(90,117)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120)], [(1,115),(2,120),(3,119),(4,118),(5,117),(6,116),(7,53),(8,52),(9,51),(10,50),(11,49),(12,54),(13,47),(14,46),(15,45),(16,44),(17,43),(18,48),(19,36),(20,35),(21,34),(22,33),(23,32),(24,31),(25,40),(26,39),(27,38),(28,37),(29,42),(30,41),(55,88),(56,87),(57,86),(58,85),(59,90),(60,89),(61,92),(62,91),(63,96),(64,95),(65,94),(66,93),(67,102),(68,101),(69,100),(70,99),(71,98),(72,97),(73,106),(74,105),(75,104),(76,103),(77,108),(78,107),(79,110),(80,109),(81,114),(82,113),(83,112),(84,111)], [(1,39,51,32,47),(2,40,52,33,48),(3,41,53,34,43),(4,42,54,35,44),(5,37,49,36,45),(6,38,50,31,46),(7,21,17,119,30),(8,22,18,120,25),(9,23,13,115,26),(10,24,14,116,27),(11,19,15,117,28),(12,20,16,118,29),(55,61,84,70,74),(56,62,79,71,75),(57,63,80,72,76),(58,64,81,67,77),(59,65,82,68,78),(60,66,83,69,73),(85,95,114,102,108),(86,96,109,97,103),(87,91,110,98,104),(88,92,111,99,105),(89,93,112,100,106),(90,94,113,101,107)], [(1,116,4,119),(2,117,5,120),(3,118,6,115),(7,47,24,42),(8,48,19,37),(9,43,20,38),(10,44,21,39),(11,45,22,40),(12,46,23,41),(13,34,29,50),(14,35,30,51),(15,36,25,52),(16,31,26,53),(17,32,27,54),(18,33,28,49),(55,89,58,86),(56,90,59,87),(57,85,60,88),(61,112,77,97),(62,113,78,98),(63,114,73,99),(64,109,74,100),(65,110,75,101),(66,111,76,102),(67,96,84,106),(68,91,79,107),(69,92,80,108),(70,93,81,103),(71,94,82,104),(72,95,83,105)]])

48 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K 3 4A4B4C4D4E4F4G4H 5 6A6B6C6D6E6F6G10A10B10C10D10E10F10G12A···12H 15 30A30B30C
order122222222222344444444566666661010101010101012···1215303030
size11115555663030210101010303030304222101010104441212121210···108888

48 irreducible representations

dim11111111222222224444888
type+++++++++++++++++
imageC1C2C2C2C2C4C4C4S3D4D6D6C4xS3D12C3:D4C4xS3F5C2xF5C2xF5C22:F5S3xF5D6:F5C2xS3xF5
kernelC2xD6:F5D6:F5C2xC6xF5C22xC3:F5C22xS3xD5C2xS3xD5S3xC2xC10C22xD15C22xF5C6xD5C2xF5C22xD5D10D10D10C2xC10C22xS3D6C2xC6C6C22C2C2
# reps14111422142124421214121

Matrix representation of C2xD6:F5 in GL8(F61)

10000000
01000000
006000000
000600000
00001000
00000100
00000010
00000001
,
01000000
6060000000
006000000
000600000
000060000
000006000
000000600
000000060
,
01000000
10000000
00120000
000600000
0000701414
00004754470
00000475447
0000141407
,
10000000
01000000
00100000
00010000
00000100
00000010
00000001
000060606060
,
500000000
050000000
0050390000
0011110000
0000701414
0000141407
00004754470
0000547754

G:=sub<GL(8,GF(61))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,60,0,0,0,0,0,0,1,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,2,60,0,0,0,0,0,0,0,0,7,47,0,14,0,0,0,0,0,54,47,14,0,0,0,0,14,47,54,0,0,0,0,0,14,0,47,7],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,60,0,0,0,0,1,0,0,60,0,0,0,0,0,1,0,60,0,0,0,0,0,0,1,60],[50,0,0,0,0,0,0,0,0,50,0,0,0,0,0,0,0,0,50,11,0,0,0,0,0,0,39,11,0,0,0,0,0,0,0,0,7,14,47,54,0,0,0,0,0,14,54,7,0,0,0,0,14,0,47,7,0,0,0,0,14,7,0,54] >;

C2xD6:F5 in GAP, Magma, Sage, TeX

C_2\times D_6\rtimes F_5
% in TeX

G:=Group("C2xD6:F5");
// GroupNames label

G:=SmallGroup(480,1000);
// by ID

G=gap.SmallGroup(480,1000);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,56,253,1356,9414,2379]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^6=c^2=d^5=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=b^3*c,e*d*e^-1=d^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<