Extensions 1→N→G→Q→1 with N=D6 and Q=C2×F5

Direct product G=N×Q with N=D6 and Q=C2×F5
dρLabelID
C22×S3×F560C2^2xS3xF5480,1197

Semidirect products G=N:Q with N=D6 and Q=C2×F5
extensionφ:Q→Out NdρLabelID
D61(C2×F5) = F5×D12φ: C2×F5/F5C2 ⊆ Out D6608+D6:1(C2xF5)480,995
D62(C2×F5) = D603C4φ: C2×F5/F5C2 ⊆ Out D6608+D6:2(C2xF5)480,997
D63(C2×F5) = F5×C3⋊D4φ: C2×F5/F5C2 ⊆ Out D6608D6:3(C2xF5)480,1010
D64(C2×F5) = C3⋊D4⋊F5φ: C2×F5/F5C2 ⊆ Out D6608D6:4(C2xF5)480,1012
D65(C2×F5) = C2×D6⋊F5φ: C2×F5/D10C2 ⊆ Out D6120D6:5(C2xF5)480,1000
D66(C2×F5) = S3×C22⋊F5φ: C2×F5/D10C2 ⊆ Out D6608+D6:6(C2xF5)480,1011

Non-split extensions G=N.Q with N=D6 and Q=C2×F5
extensionφ:Q→Out NdρLabelID
D6.1(C2×F5) = D12.2F5φ: C2×F5/F5C2 ⊆ Out D62408-D6.1(C2xF5)480,987
D6.2(C2×F5) = D12.F5φ: C2×F5/F5C2 ⊆ Out D62408-D6.2(C2xF5)480,989
D6.3(C2×F5) = C5⋊C8.D6φ: C2×F5/F5C2 ⊆ Out D62408D6.3(C2xF5)480,1003
D6.4(C2×F5) = D15⋊C8⋊C2φ: C2×F5/F5C2 ⊆ Out D62408D6.4(C2xF5)480,1005
D6.5(C2×F5) = C4⋊F53S3φ: C2×F5/D10C2 ⊆ Out D61208D6.5(C2xF5)480,983
D6.6(C2×F5) = (C4×S3)⋊F5φ: C2×F5/D10C2 ⊆ Out D61208D6.6(C2xF5)480,985
D6.7(C2×F5) = D15⋊M4(2)φ: C2×F5/D10C2 ⊆ Out D61208D6.7(C2xF5)480,991
D6.8(C2×F5) = C5⋊C8⋊D6φ: C2×F5/D10C2 ⊆ Out D61208D6.8(C2xF5)480,993
D6.9(C2×F5) = S3×C22.F5φ: C2×F5/D10C2 ⊆ Out D61208-D6.9(C2xF5)480,1004
D6.10(C2×F5) = C2×D6.F5φ: C2×F5/D10C2 ⊆ Out D6240D6.10(C2xF5)480,1008
D6.11(C2×F5) = S3×D5⋊C8φ: trivial image1208D6.11(C2xF5)480,986
D6.12(C2×F5) = S3×C4.F5φ: trivial image1208D6.12(C2xF5)480,988
D6.13(C2×F5) = C4×S3×F5φ: trivial image608D6.13(C2xF5)480,994
D6.14(C2×F5) = S3×C4⋊F5φ: trivial image608D6.14(C2xF5)480,996
D6.15(C2×F5) = C2×S3×C5⋊C8φ: trivial image240D6.15(C2xF5)480,1002

׿
×
𝔽