Extensions 1→N→G→Q→1 with N=C2×S3×D5 and Q=C4

Direct product G=N×Q with N=C2×S3×D5 and Q=C4
dρLabelID
S3×C2×C4×D5120S3xC2xC4xD5480,1086

Semidirect products G=N:Q with N=C2×S3×D5 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×S3×D5)⋊1C4 = D5×D6⋊C4φ: C4/C2C2 ⊆ Out C2×S3×D5120(C2xS3xD5):1C4480,547
(C2×S3×D5)⋊2C4 = S3×D10⋊C4φ: C4/C2C2 ⊆ Out C2×S3×D5120(C2xS3xD5):2C4480,548
(C2×S3×D5)⋊3C4 = D30.27D4φ: C4/C2C2 ⊆ Out C2×S3×D5120(C2xS3xD5):3C4480,549
(C2×S3×D5)⋊4C4 = C2×D6⋊F5φ: C4/C2C2 ⊆ Out C2×S3×D5120(C2xS3xD5):4C4480,1000
(C2×S3×D5)⋊5C4 = S3×C22⋊F5φ: C4/C2C2 ⊆ Out C2×S3×D5608+(C2xS3xD5):5C4480,1011
(C2×S3×D5)⋊6C4 = C22×S3×F5φ: C4/C2C2 ⊆ Out C2×S3×D560(C2xS3xD5):6C4480,1197

Non-split extensions G=N.Q with N=C2×S3×D5 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×S3×D5).1C4 = D5×C8⋊S3φ: C4/C2C2 ⊆ Out C2×S3×D51204(C2xS3xD5).1C4480,320
(C2×S3×D5).2C4 = S3×C8⋊D5φ: C4/C2C2 ⊆ Out C2×S3×D51204(C2xS3xD5).2C4480,321
(C2×S3×D5).3C4 = C40⋊D6φ: C4/C2C2 ⊆ Out C2×S3×D51204(C2xS3xD5).3C4480,322
(C2×S3×D5).4C4 = S3×D5⋊C8φ: C4/C2C2 ⊆ Out C2×S3×D51208(C2xS3xD5).4C4480,986
(C2×S3×D5).5C4 = S3×C4.F5φ: C4/C2C2 ⊆ Out C2×S3×D51208(C2xS3xD5).5C4480,988
(C2×S3×D5).6C4 = D15⋊M4(2)φ: C4/C2C2 ⊆ Out C2×S3×D51208(C2xS3xD5).6C4480,991
(C2×S3×D5).7C4 = C5⋊C8⋊D6φ: C4/C2C2 ⊆ Out C2×S3×D51208(C2xS3xD5).7C4480,993
(C2×S3×D5).8C4 = S3×C8×D5φ: trivial image1204(C2xS3xD5).8C4480,319

׿
×
𝔽