Extensions 1→N→G→Q→1 with N=C8×D5 and Q=S3

Direct product G=N×Q with N=C8×D5 and Q=S3
dρLabelID
S3×C8×D51204S3xC8xD5480,319

Semidirect products G=N:Q with N=C8×D5 and Q=S3
extensionφ:Q→Out NdρLabelID
(C8×D5)⋊1S3 = D5×D24φ: S3/C3C2 ⊆ Out C8×D51204+(C8xD5):1S3480,324
(C8×D5)⋊2S3 = D247D5φ: S3/C3C2 ⊆ Out C8×D52404-(C8xD5):2S3480,346
(C8×D5)⋊3S3 = D120⋊C2φ: S3/C3C2 ⊆ Out C8×D52404+(C8xD5):3S3480,347
(C8×D5)⋊4S3 = D5×C24⋊C2φ: S3/C3C2 ⊆ Out C8×D51204(C8xD5):4S3480,323
(C8×D5)⋊5S3 = C40.31D6φ: S3/C3C2 ⊆ Out C8×D52404(C8xD5):5S3480,345
(C8×D5)⋊6S3 = C40.54D6φ: S3/C3C2 ⊆ Out C8×D52404(C8xD5):6S3480,341
(C8×D5)⋊7S3 = D5×C8⋊S3φ: S3/C3C2 ⊆ Out C8×D51204(C8xD5):7S3480,320
(C8×D5)⋊8S3 = C40.34D6φ: S3/C3C2 ⊆ Out C8×D52404(C8xD5):8S3480,342

Non-split extensions G=N.Q with N=C8×D5 and Q=S3
extensionφ:Q→Out NdρLabelID
(C8×D5).1S3 = D5×Dic12φ: S3/C3C2 ⊆ Out C8×D52404-(C8xD5).1S3480,335
(C8×D5).2S3 = C40.51D6φ: S3/C3C2 ⊆ Out C8×D52404(C8xD5).2S3480,10
(C8×D5).3S3 = D5.D24φ: S3/C3C2 ⊆ Out C8×D51204(C8xD5).3S3480,299
(C8×D5).4S3 = C24.1F5φ: S3/C3C2 ⊆ Out C8×D52404(C8xD5).4S3480,301
(C8×D5).5S3 = C120⋊C4φ: S3/C3C2 ⊆ Out C8×D51204(C8xD5).5S3480,298
(C8×D5).6S3 = C40.Dic3φ: S3/C3C2 ⊆ Out C8×D52404(C8xD5).6S3480,300
(C8×D5).7S3 = C24.F5φ: S3/C3C2 ⊆ Out C8×D52404(C8xD5).7S3480,294
(C8×D5).8S3 = C120.C4φ: S3/C3C2 ⊆ Out C8×D52404(C8xD5).8S3480,295
(C8×D5).9S3 = C8×C3⋊F5φ: S3/C3C2 ⊆ Out C8×D51204(C8xD5).9S3480,296
(C8×D5).10S3 = C24⋊F5φ: S3/C3C2 ⊆ Out C8×D51204(C8xD5).10S3480,297
(C8×D5).11S3 = D5×C3⋊C16φ: trivial image2404(C8xD5).11S3480,7

׿
×
𝔽