Copied to
clipboard

G = C5×C25⋊C4order 500 = 22·53

Direct product of C5 and C25⋊C4

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C5×C25⋊C4, C254C20, C52.2F5, D25.2C10, (C5×C25)⋊3C4, C5.1(C5×F5), (C5×D25).1C2, SmallGroup(500,16)

Series: Derived Chief Lower central Upper central

C1C25 — C5×C25⋊C4
C1C5C25D25C5×D25 — C5×C25⋊C4
C25 — C5×C25⋊C4
C1C5

Generators and relations for C5×C25⋊C4
 G = < a,b,c | a5=b25=c4=1, ab=ba, ac=ca, cbc-1=b18 >

25C2
4C5
25C4
5D5
25C10
4C25
5F5
25C20
5C5×D5
5C5×F5

Smallest permutation representation of C5×C25⋊C4
On 100 points
Generators in S100
(1 6 11 16 21)(2 7 12 17 22)(3 8 13 18 23)(4 9 14 19 24)(5 10 15 20 25)(26 46 41 36 31)(27 47 42 37 32)(28 48 43 38 33)(29 49 44 39 34)(30 50 45 40 35)(51 66 56 71 61)(52 67 57 72 62)(53 68 58 73 63)(54 69 59 74 64)(55 70 60 75 65)(76 86 96 81 91)(77 87 97 82 92)(78 88 98 83 93)(79 89 99 84 94)(80 90 100 85 95)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)
(1 83 50 60)(2 90 49 53)(3 97 48 71)(4 79 47 64)(5 86 46 57)(6 93 45 75)(7 100 44 68)(8 82 43 61)(9 89 42 54)(10 96 41 72)(11 78 40 65)(12 85 39 58)(13 92 38 51)(14 99 37 69)(15 81 36 62)(16 88 35 55)(17 95 34 73)(18 77 33 66)(19 84 32 59)(20 91 31 52)(21 98 30 70)(22 80 29 63)(23 87 28 56)(24 94 27 74)(25 76 26 67)

G:=sub<Sym(100)| (1,6,11,16,21)(2,7,12,17,22)(3,8,13,18,23)(4,9,14,19,24)(5,10,15,20,25)(26,46,41,36,31)(27,47,42,37,32)(28,48,43,38,33)(29,49,44,39,34)(30,50,45,40,35)(51,66,56,71,61)(52,67,57,72,62)(53,68,58,73,63)(54,69,59,74,64)(55,70,60,75,65)(76,86,96,81,91)(77,87,97,82,92)(78,88,98,83,93)(79,89,99,84,94)(80,90,100,85,95), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (1,83,50,60)(2,90,49,53)(3,97,48,71)(4,79,47,64)(5,86,46,57)(6,93,45,75)(7,100,44,68)(8,82,43,61)(9,89,42,54)(10,96,41,72)(11,78,40,65)(12,85,39,58)(13,92,38,51)(14,99,37,69)(15,81,36,62)(16,88,35,55)(17,95,34,73)(18,77,33,66)(19,84,32,59)(20,91,31,52)(21,98,30,70)(22,80,29,63)(23,87,28,56)(24,94,27,74)(25,76,26,67)>;

G:=Group( (1,6,11,16,21)(2,7,12,17,22)(3,8,13,18,23)(4,9,14,19,24)(5,10,15,20,25)(26,46,41,36,31)(27,47,42,37,32)(28,48,43,38,33)(29,49,44,39,34)(30,50,45,40,35)(51,66,56,71,61)(52,67,57,72,62)(53,68,58,73,63)(54,69,59,74,64)(55,70,60,75,65)(76,86,96,81,91)(77,87,97,82,92)(78,88,98,83,93)(79,89,99,84,94)(80,90,100,85,95), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (1,83,50,60)(2,90,49,53)(3,97,48,71)(4,79,47,64)(5,86,46,57)(6,93,45,75)(7,100,44,68)(8,82,43,61)(9,89,42,54)(10,96,41,72)(11,78,40,65)(12,85,39,58)(13,92,38,51)(14,99,37,69)(15,81,36,62)(16,88,35,55)(17,95,34,73)(18,77,33,66)(19,84,32,59)(20,91,31,52)(21,98,30,70)(22,80,29,63)(23,87,28,56)(24,94,27,74)(25,76,26,67) );

G=PermutationGroup([[(1,6,11,16,21),(2,7,12,17,22),(3,8,13,18,23),(4,9,14,19,24),(5,10,15,20,25),(26,46,41,36,31),(27,47,42,37,32),(28,48,43,38,33),(29,49,44,39,34),(30,50,45,40,35),(51,66,56,71,61),(52,67,57,72,62),(53,68,58,73,63),(54,69,59,74,64),(55,70,60,75,65),(76,86,96,81,91),(77,87,97,82,92),(78,88,98,83,93),(79,89,99,84,94),(80,90,100,85,95)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)], [(1,83,50,60),(2,90,49,53),(3,97,48,71),(4,79,47,64),(5,86,46,57),(6,93,45,75),(7,100,44,68),(8,82,43,61),(9,89,42,54),(10,96,41,72),(11,78,40,65),(12,85,39,58),(13,92,38,51),(14,99,37,69),(15,81,36,62),(16,88,35,55),(17,95,34,73),(18,77,33,66),(19,84,32,59),(20,91,31,52),(21,98,30,70),(22,80,29,63),(23,87,28,56),(24,94,27,74),(25,76,26,67)]])

50 conjugacy classes

class 1  2 4A4B5A5B5C5D5E···5I10A10B10C10D20A···20H25A···25Y
order124455555···51010101020···2025···25
size125252511114···42525252525···254···4

50 irreducible representations

dim1111114444
type++++
imageC1C2C4C5C10C20F5C25⋊C4C5×F5C5×C25⋊C4
kernelC5×C25⋊C4C5×D25C5×C25C25⋊C4D25C25C52C5C5C1
# reps11244815420

Matrix representation of C5×C25⋊C4 in GL4(𝔽101) generated by

36000
03600
00360
00036
,
25000
09700
00780
00079
,
0010
0001
0100
1000
G:=sub<GL(4,GF(101))| [36,0,0,0,0,36,0,0,0,0,36,0,0,0,0,36],[25,0,0,0,0,97,0,0,0,0,78,0,0,0,0,79],[0,0,0,1,0,0,1,0,1,0,0,0,0,1,0,0] >;

C5×C25⋊C4 in GAP, Magma, Sage, TeX

C_5\times C_{25}\rtimes C_4
% in TeX

G:=Group("C5xC25:C4");
// GroupNames label

G:=SmallGroup(500,16);
// by ID

G=gap.SmallGroup(500,16);
# by ID

G:=PCGroup([5,-2,-5,-2,-5,-5,50,2803,973,118,5004,1014]);
// Polycyclic

G:=Group<a,b,c|a^5=b^25=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^18>;
// generators/relations

Export

Subgroup lattice of C5×C25⋊C4 in TeX

׿
×
𝔽