Copied to
clipboard

G = F5×C25order 500 = 22·53

Direct product of C25 and F5

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: F5×C25, C5⋊C100, D5.C50, C52.2C20, (C5×C25)⋊1C4, (C5×F5).C5, C5.4(C5×F5), (D5×C25).1C2, (C5×D5).1C10, SmallGroup(500,15)

Series: Derived Chief Lower central Upper central

C1C5 — F5×C25
C1C5C52C5×D5D5×C25 — F5×C25
C5 — F5×C25
C1C25

Generators and relations for F5×C25
 G = < a,b,c | a25=b5=c4=1, ab=ba, ac=ca, cbc-1=b3 >

5C2
4C5
5C4
5C10
4C25
5C20
5C50
5C100

Smallest permutation representation of F5×C25
On 100 points
Generators in S100
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)
(1 6 11 16 21)(2 7 12 17 22)(3 8 13 18 23)(4 9 14 19 24)(5 10 15 20 25)(26 41 31 46 36)(27 42 32 47 37)(28 43 33 48 38)(29 44 34 49 39)(30 45 35 50 40)(51 71 66 61 56)(52 72 67 62 57)(53 73 68 63 58)(54 74 69 64 59)(55 75 70 65 60)(76 86 96 81 91)(77 87 97 82 92)(78 88 98 83 93)(79 89 99 84 94)(80 90 100 85 95)
(1 42 60 77)(2 43 61 78)(3 44 62 79)(4 45 63 80)(5 46 64 81)(6 47 65 82)(7 48 66 83)(8 49 67 84)(9 50 68 85)(10 26 69 86)(11 27 70 87)(12 28 71 88)(13 29 72 89)(14 30 73 90)(15 31 74 91)(16 32 75 92)(17 33 51 93)(18 34 52 94)(19 35 53 95)(20 36 54 96)(21 37 55 97)(22 38 56 98)(23 39 57 99)(24 40 58 100)(25 41 59 76)

G:=sub<Sym(100)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (1,6,11,16,21)(2,7,12,17,22)(3,8,13,18,23)(4,9,14,19,24)(5,10,15,20,25)(26,41,31,46,36)(27,42,32,47,37)(28,43,33,48,38)(29,44,34,49,39)(30,45,35,50,40)(51,71,66,61,56)(52,72,67,62,57)(53,73,68,63,58)(54,74,69,64,59)(55,75,70,65,60)(76,86,96,81,91)(77,87,97,82,92)(78,88,98,83,93)(79,89,99,84,94)(80,90,100,85,95), (1,42,60,77)(2,43,61,78)(3,44,62,79)(4,45,63,80)(5,46,64,81)(6,47,65,82)(7,48,66,83)(8,49,67,84)(9,50,68,85)(10,26,69,86)(11,27,70,87)(12,28,71,88)(13,29,72,89)(14,30,73,90)(15,31,74,91)(16,32,75,92)(17,33,51,93)(18,34,52,94)(19,35,53,95)(20,36,54,96)(21,37,55,97)(22,38,56,98)(23,39,57,99)(24,40,58,100)(25,41,59,76)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (1,6,11,16,21)(2,7,12,17,22)(3,8,13,18,23)(4,9,14,19,24)(5,10,15,20,25)(26,41,31,46,36)(27,42,32,47,37)(28,43,33,48,38)(29,44,34,49,39)(30,45,35,50,40)(51,71,66,61,56)(52,72,67,62,57)(53,73,68,63,58)(54,74,69,64,59)(55,75,70,65,60)(76,86,96,81,91)(77,87,97,82,92)(78,88,98,83,93)(79,89,99,84,94)(80,90,100,85,95), (1,42,60,77)(2,43,61,78)(3,44,62,79)(4,45,63,80)(5,46,64,81)(6,47,65,82)(7,48,66,83)(8,49,67,84)(9,50,68,85)(10,26,69,86)(11,27,70,87)(12,28,71,88)(13,29,72,89)(14,30,73,90)(15,31,74,91)(16,32,75,92)(17,33,51,93)(18,34,52,94)(19,35,53,95)(20,36,54,96)(21,37,55,97)(22,38,56,98)(23,39,57,99)(24,40,58,100)(25,41,59,76) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)], [(1,6,11,16,21),(2,7,12,17,22),(3,8,13,18,23),(4,9,14,19,24),(5,10,15,20,25),(26,41,31,46,36),(27,42,32,47,37),(28,43,33,48,38),(29,44,34,49,39),(30,45,35,50,40),(51,71,66,61,56),(52,72,67,62,57),(53,73,68,63,58),(54,74,69,64,59),(55,75,70,65,60),(76,86,96,81,91),(77,87,97,82,92),(78,88,98,83,93),(79,89,99,84,94),(80,90,100,85,95)], [(1,42,60,77),(2,43,61,78),(3,44,62,79),(4,45,63,80),(5,46,64,81),(6,47,65,82),(7,48,66,83),(8,49,67,84),(9,50,68,85),(10,26,69,86),(11,27,70,87),(12,28,71,88),(13,29,72,89),(14,30,73,90),(15,31,74,91),(16,32,75,92),(17,33,51,93),(18,34,52,94),(19,35,53,95),(20,36,54,96),(21,37,55,97),(22,38,56,98),(23,39,57,99),(24,40,58,100),(25,41,59,76)]])

125 conjugacy classes

class 1  2 4A4B5A5B5C5D5E···5I10A10B10C10D20A···20H25A···25T25U···25AN50A···50T100A···100AN
order124455555···51010101020···2025···2525···2550···50100···100
size155511114···455555···51···14···45···55···5

125 irreducible representations

dim111111111444
type+++
imageC1C2C4C5C10C20C25C50C100F5C5×F5F5×C25
kernelF5×C25D5×C25C5×C25C5×F5C5×D5C52F5D5C5C25C5C1
# reps1124482020401420

Matrix representation of F5×C25 in GL4(𝔽101) generated by

81000
08100
00810
00081
,
84000
09500
00870
00036
,
0010
0001
0100
1000
G:=sub<GL(4,GF(101))| [81,0,0,0,0,81,0,0,0,0,81,0,0,0,0,81],[84,0,0,0,0,95,0,0,0,0,87,0,0,0,0,36],[0,0,0,1,0,0,1,0,1,0,0,0,0,1,0,0] >;

F5×C25 in GAP, Magma, Sage, TeX

F_5\times C_{25}
% in TeX

G:=Group("F5xC25");
// GroupNames label

G:=SmallGroup(500,15);
// by ID

G=gap.SmallGroup(500,15);
# by ID

G:=PCGroup([5,-2,-5,-2,-5,-5,50,106,5004,1014]);
// Polycyclic

G:=Group<a,b,c|a^25=b^5=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^3>;
// generators/relations

Export

Subgroup lattice of F5×C25 in TeX

׿
×
𝔽