metacyclic, supersoluble, monomial
Aliases: C25⋊C20, C52.F5, D25.C10, 5- 1+2⋊C4, C25⋊C4⋊C5, C25⋊C10.C2, C5.3(C5×F5), Aut(D25), Hol(C25), SmallGroup(500,18)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C25 — D25 — C25⋊C10 — C25⋊C20 |
C25 — C25⋊C20 |
Generators and relations for C25⋊C20
G = < a,b | a25=b20=1, bab-1=a3 >
Character table of C25⋊C20
class | 1 | 2 | 4A | 4B | 5A | 5B | 5C | 5D | 5E | 10A | 10B | 10C | 10D | 20A | 20B | 20C | 20D | 20E | 20F | 20G | 20H | 25A | 25B | 25C | 25D | 25E | |
size | 1 | 25 | 25 | 25 | 4 | 5 | 5 | 5 | 5 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 20 | 20 | 20 | 20 | 20 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | -i | i | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -i | -i | i | -i | i | -i | i | i | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ4 | 1 | -1 | i | -i | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | i | i | -i | i | -i | i | -i | -i | 1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ5 | 1 | 1 | -1 | -1 | 1 | ζ52 | ζ53 | ζ5 | ζ54 | ζ5 | ζ54 | ζ53 | ζ52 | -ζ52 | -ζ53 | -ζ5 | -ζ5 | -ζ54 | -ζ54 | -ζ52 | -ζ53 | 1 | ζ5 | ζ54 | ζ52 | ζ53 | linear of order 10 |
ρ6 | 1 | 1 | 1 | 1 | 1 | ζ53 | ζ52 | ζ54 | ζ5 | ζ54 | ζ5 | ζ52 | ζ53 | ζ53 | ζ52 | ζ54 | ζ54 | ζ5 | ζ5 | ζ53 | ζ52 | 1 | ζ54 | ζ5 | ζ53 | ζ52 | linear of order 5 |
ρ7 | 1 | 1 | 1 | 1 | 1 | ζ52 | ζ53 | ζ5 | ζ54 | ζ5 | ζ54 | ζ53 | ζ52 | ζ52 | ζ53 | ζ5 | ζ5 | ζ54 | ζ54 | ζ52 | ζ53 | 1 | ζ5 | ζ54 | ζ52 | ζ53 | linear of order 5 |
ρ8 | 1 | 1 | 1 | 1 | 1 | ζ54 | ζ5 | ζ52 | ζ53 | ζ52 | ζ53 | ζ5 | ζ54 | ζ54 | ζ5 | ζ52 | ζ52 | ζ53 | ζ53 | ζ54 | ζ5 | 1 | ζ52 | ζ53 | ζ54 | ζ5 | linear of order 5 |
ρ9 | 1 | 1 | -1 | -1 | 1 | ζ5 | ζ54 | ζ53 | ζ52 | ζ53 | ζ52 | ζ54 | ζ5 | -ζ5 | -ζ54 | -ζ53 | -ζ53 | -ζ52 | -ζ52 | -ζ5 | -ζ54 | 1 | ζ53 | ζ52 | ζ5 | ζ54 | linear of order 10 |
ρ10 | 1 | 1 | -1 | -1 | 1 | ζ53 | ζ52 | ζ54 | ζ5 | ζ54 | ζ5 | ζ52 | ζ53 | -ζ53 | -ζ52 | -ζ54 | -ζ54 | -ζ5 | -ζ5 | -ζ53 | -ζ52 | 1 | ζ54 | ζ5 | ζ53 | ζ52 | linear of order 10 |
ρ11 | 1 | 1 | -1 | -1 | 1 | ζ54 | ζ5 | ζ52 | ζ53 | ζ52 | ζ53 | ζ5 | ζ54 | -ζ54 | -ζ5 | -ζ52 | -ζ52 | -ζ53 | -ζ53 | -ζ54 | -ζ5 | 1 | ζ52 | ζ53 | ζ54 | ζ5 | linear of order 10 |
ρ12 | 1 | 1 | 1 | 1 | 1 | ζ5 | ζ54 | ζ53 | ζ52 | ζ53 | ζ52 | ζ54 | ζ5 | ζ5 | ζ54 | ζ53 | ζ53 | ζ52 | ζ52 | ζ5 | ζ54 | 1 | ζ53 | ζ52 | ζ5 | ζ54 | linear of order 5 |
ρ13 | 1 | -1 | -i | i | 1 | ζ53 | ζ52 | ζ54 | ζ5 | -ζ54 | -ζ5 | -ζ52 | -ζ53 | ζ43ζ53 | ζ43ζ52 | ζ4ζ54 | ζ43ζ54 | ζ4ζ5 | ζ43ζ5 | ζ4ζ53 | ζ4ζ52 | 1 | ζ54 | ζ5 | ζ53 | ζ52 | linear of order 20 |
ρ14 | 1 | -1 | -i | i | 1 | ζ54 | ζ5 | ζ52 | ζ53 | -ζ52 | -ζ53 | -ζ5 | -ζ54 | ζ43ζ54 | ζ43ζ5 | ζ4ζ52 | ζ43ζ52 | ζ4ζ53 | ζ43ζ53 | ζ4ζ54 | ζ4ζ5 | 1 | ζ52 | ζ53 | ζ54 | ζ5 | linear of order 20 |
ρ15 | 1 | -1 | i | -i | 1 | ζ54 | ζ5 | ζ52 | ζ53 | -ζ52 | -ζ53 | -ζ5 | -ζ54 | ζ4ζ54 | ζ4ζ5 | ζ43ζ52 | ζ4ζ52 | ζ43ζ53 | ζ4ζ53 | ζ43ζ54 | ζ43ζ5 | 1 | ζ52 | ζ53 | ζ54 | ζ5 | linear of order 20 |
ρ16 | 1 | -1 | -i | i | 1 | ζ5 | ζ54 | ζ53 | ζ52 | -ζ53 | -ζ52 | -ζ54 | -ζ5 | ζ43ζ5 | ζ43ζ54 | ζ4ζ53 | ζ43ζ53 | ζ4ζ52 | ζ43ζ52 | ζ4ζ5 | ζ4ζ54 | 1 | ζ53 | ζ52 | ζ5 | ζ54 | linear of order 20 |
ρ17 | 1 | -1 | i | -i | 1 | ζ5 | ζ54 | ζ53 | ζ52 | -ζ53 | -ζ52 | -ζ54 | -ζ5 | ζ4ζ5 | ζ4ζ54 | ζ43ζ53 | ζ4ζ53 | ζ43ζ52 | ζ4ζ52 | ζ43ζ5 | ζ43ζ54 | 1 | ζ53 | ζ52 | ζ5 | ζ54 | linear of order 20 |
ρ18 | 1 | -1 | i | -i | 1 | ζ52 | ζ53 | ζ5 | ζ54 | -ζ5 | -ζ54 | -ζ53 | -ζ52 | ζ4ζ52 | ζ4ζ53 | ζ43ζ5 | ζ4ζ5 | ζ43ζ54 | ζ4ζ54 | ζ43ζ52 | ζ43ζ53 | 1 | ζ5 | ζ54 | ζ52 | ζ53 | linear of order 20 |
ρ19 | 1 | -1 | -i | i | 1 | ζ52 | ζ53 | ζ5 | ζ54 | -ζ5 | -ζ54 | -ζ53 | -ζ52 | ζ43ζ52 | ζ43ζ53 | ζ4ζ5 | ζ43ζ5 | ζ4ζ54 | ζ43ζ54 | ζ4ζ52 | ζ4ζ53 | 1 | ζ5 | ζ54 | ζ52 | ζ53 | linear of order 20 |
ρ20 | 1 | -1 | i | -i | 1 | ζ53 | ζ52 | ζ54 | ζ5 | -ζ54 | -ζ5 | -ζ52 | -ζ53 | ζ4ζ53 | ζ4ζ52 | ζ43ζ54 | ζ4ζ54 | ζ43ζ5 | ζ4ζ5 | ζ43ζ53 | ζ43ζ52 | 1 | ζ54 | ζ5 | ζ53 | ζ52 | linear of order 20 |
ρ21 | 4 | 0 | 0 | 0 | 4 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from F5 |
ρ22 | 4 | 0 | 0 | 0 | 4 | 4ζ54 | 4ζ5 | 4ζ52 | 4ζ53 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -ζ52 | -ζ53 | -ζ54 | -ζ5 | complex lifted from C5×F5 |
ρ23 | 4 | 0 | 0 | 0 | 4 | 4ζ53 | 4ζ52 | 4ζ54 | 4ζ5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -ζ54 | -ζ5 | -ζ53 | -ζ52 | complex lifted from C5×F5 |
ρ24 | 4 | 0 | 0 | 0 | 4 | 4ζ5 | 4ζ54 | 4ζ53 | 4ζ52 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -ζ53 | -ζ52 | -ζ5 | -ζ54 | complex lifted from C5×F5 |
ρ25 | 4 | 0 | 0 | 0 | 4 | 4ζ52 | 4ζ53 | 4ζ5 | 4ζ54 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -ζ5 | -ζ54 | -ζ52 | -ζ53 | complex lifted from C5×F5 |
ρ26 | 20 | 0 | 0 | 0 | -5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)
(2 18 15 14 22 8 20 24 17 23 25 9 12 13 5 19 7 3 10 4)(6 11 21 16)
G:=sub<Sym(25)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25), (2,18,15,14,22,8,20,24,17,23,25,9,12,13,5,19,7,3,10,4)(6,11,21,16)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25), (2,18,15,14,22,8,20,24,17,23,25,9,12,13,5,19,7,3,10,4)(6,11,21,16) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)], [(2,18,15,14,22,8,20,24,17,23,25,9,12,13,5,19,7,3,10,4),(6,11,21,16)]])
G:=TransitiveGroup(25,40);
Matrix representation of C25⋊C20 ►in GL20(ℤ)
0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
-1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
-1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
G:=sub<GL(20,Integers())| [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0],[1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0] >;
C25⋊C20 in GAP, Magma, Sage, TeX
C_{25}\rtimes C_{20}
% in TeX
G:=Group("C25:C20");
// GroupNames label
G:=SmallGroup(500,18);
// by ID
G=gap.SmallGroup(500,18);
# by ID
G:=PCGroup([5,-2,-5,-2,-5,-5,50,8803,1208,373,418,5004,1014]);
// Polycyclic
G:=Group<a,b|a^25=b^20=1,b*a*b^-1=a^3>;
// generators/relations
Export
Subgroup lattice of C25⋊C20 in TeX
Character table of C25⋊C20 in TeX