extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C4).1D4 = C2≀C4 | φ: D4/C1 → D4 ⊆ Aut C2×C4 | 8 | 4+ | (C2xC4).1D4 | 64,32 |
(C2×C4).2D4 = C23.D4 | φ: D4/C1 → D4 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).2D4 | 64,33 |
(C2×C4).3D4 = C42.C4 | φ: D4/C1 → D4 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).3D4 | 64,36 |
(C2×C4).4D4 = C42.3C4 | φ: D4/C1 → D4 ⊆ Aut C2×C4 | 16 | 4- | (C2xC4).4D4 | 64,37 |
(C2×C4).5D4 = D4.8D4 | φ: D4/C1 → D4 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).5D4 | 64,135 |
(C2×C4).6D4 = D4.10D4 | φ: D4/C1 → D4 ⊆ Aut C2×C4 | 16 | 4- | (C2xC4).6D4 | 64,137 |
(C2×C4).7D4 = C23.7D4 | φ: D4/C1 → D4 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).7D4 | 64,139 |
(C2×C4).8D4 = C4.9C42 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).8D4 | 64,18 |
(C2×C4).9D4 = C4.10C42 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).9D4 | 64,19 |
(C2×C4).10D4 = D8⋊2C4 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).10D4 | 64,41 |
(C2×C4).11D4 = M5(2)⋊C2 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 16 | 4+ | (C2xC4).11D4 | 64,42 |
(C2×C4).12D4 = C8.17D4 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 32 | 4- | (C2xC4).12D4 | 64,43 |
(C2×C4).13D4 = C8.Q8 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).13D4 | 64,46 |
(C2×C4).14D4 = C23⋊Q8 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).14D4 | 64,74 |
(C2×C4).15D4 = C23.78C23 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).15D4 | 64,76 |
(C2×C4).16D4 = C23.Q8 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).16D4 | 64,77 |
(C2×C4).17D4 = C23.11D4 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).17D4 | 64,78 |
(C2×C4).18D4 = C23.81C23 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).18D4 | 64,79 |
(C2×C4).19D4 = C23.4Q8 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).19D4 | 64,80 |
(C2×C4).20D4 = C23.83C23 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).20D4 | 64,81 |
(C2×C4).21D4 = C42⋊C22 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).21D4 | 64,102 |
(C2×C4).22D4 = C22⋊D8 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 16 | | (C2xC4).22D4 | 64,128 |
(C2×C4).23D4 = Q8⋊D4 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).23D4 | 64,129 |
(C2×C4).24D4 = C22⋊SD16 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 16 | | (C2xC4).24D4 | 64,131 |
(C2×C4).25D4 = C22⋊Q16 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).25D4 | 64,132 |
(C2×C4).26D4 = C4⋊D8 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).26D4 | 64,140 |
(C2×C4).27D4 = C4⋊2Q16 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).27D4 | 64,143 |
(C2×C4).28D4 = D4.2D4 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).28D4 | 64,144 |
(C2×C4).29D4 = Q8.D4 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).29D4 | 64,145 |
(C2×C4).30D4 = C8⋊D4 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).30D4 | 64,149 |
(C2×C4).31D4 = C8⋊2D4 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).31D4 | 64,150 |
(C2×C4).32D4 = C8.D4 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).32D4 | 64,151 |
(C2×C4).33D4 = D4⋊Q8 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).33D4 | 64,155 |
(C2×C4).34D4 = D4⋊2Q8 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).34D4 | 64,157 |
(C2×C4).35D4 = D4.Q8 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).35D4 | 64,159 |
(C2×C4).36D4 = Q8.Q8 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).36D4 | 64,160 |
(C2×C4).37D4 = C22.D8 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).37D4 | 64,161 |
(C2×C4).38D4 = C23.46D4 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).38D4 | 64,162 |
(C2×C4).39D4 = C23.47D4 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).39D4 | 64,164 |
(C2×C4).40D4 = C23.48D4 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).40D4 | 64,165 |
(C2×C4).41D4 = C42.28C22 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).41D4 | 64,170 |
(C2×C4).42D4 = C42.29C22 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).42D4 | 64,171 |
(C2×C4).43D4 = C42.30C22 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).43D4 | 64,172 |
(C2×C4).44D4 = C8⋊3D4 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).44D4 | 64,177 |
(C2×C4).45D4 = C8.2D4 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).45D4 | 64,178 |
(C2×C4).46D4 = C8⋊Q8 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 64 | | (C2xC4).46D4 | 64,182 |
(C2×C4).47D4 = C16⋊C22 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 16 | 4+ | (C2xC4).47D4 | 64,190 |
(C2×C4).48D4 = Q32⋊C2 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 32 | 4- | (C2xC4).48D4 | 64,191 |
(C2×C4).49D4 = C23.38C23 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).49D4 | 64,217 |
(C2×C4).50D4 = C2×C8.C22 | φ: D4/C2 → C22 ⊆ Aut C2×C4 | 32 | | (C2xC4).50D4 | 64,255 |
(C2×C4).51D4 = C4×D8 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).51D4 | 64,118 |
(C2×C4).52D4 = C4×SD16 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).52D4 | 64,119 |
(C2×C4).53D4 = C4×Q16 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).53D4 | 64,120 |
(C2×C4).54D4 = C8⋊8D4 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).54D4 | 64,146 |
(C2×C4).55D4 = C8⋊7D4 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).55D4 | 64,147 |
(C2×C4).56D4 = C8.18D4 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).56D4 | 64,148 |
(C2×C4).57D4 = C42.78C22 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).57D4 | 64,169 |
(C2×C4).58D4 = C8.12D4 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).58D4 | 64,176 |
(C2×C4).59D4 = C8.5Q8 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).59D4 | 64,180 |
(C2×C4).60D4 = C2.D16 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).60D4 | 64,38 |
(C2×C4).61D4 = C2.Q32 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).61D4 | 64,39 |
(C2×C4).62D4 = D8.C4 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 32 | 2 | (C2xC4).62D4 | 64,40 |
(C2×C4).63D4 = C16⋊3C4 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).63D4 | 64,47 |
(C2×C4).64D4 = C16⋊4C4 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).64D4 | 64,48 |
(C2×C4).65D4 = C8.4Q8 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 32 | 2 | (C2xC4).65D4 | 64,49 |
(C2×C4).66D4 = C42⋊8C4 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).66D4 | 64,63 |
(C2×C4).67D4 = C42⋊9C4 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).67D4 | 64,65 |
(C2×C4).68D4 = C23.67C23 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).68D4 | 64,72 |
(C2×C4).69D4 = C2×D4⋊C4 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).69D4 | 64,95 |
(C2×C4).70D4 = C2×Q8⋊C4 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).70D4 | 64,96 |
(C2×C4).71D4 = C4⋊M4(2) | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).71D4 | 64,104 |
(C2×C4).72D4 = C2×C4.Q8 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).72D4 | 64,106 |
(C2×C4).73D4 = C2×C2.D8 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).73D4 | 64,107 |
(C2×C4).74D4 = C4.4D8 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).74D4 | 64,167 |
(C2×C4).75D4 = C4.SD16 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).75D4 | 64,168 |
(C2×C4).76D4 = C8⋊5D4 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).76D4 | 64,173 |
(C2×C4).77D4 = C8⋊4D4 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).77D4 | 64,174 |
(C2×C4).78D4 = C4⋊Q16 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).78D4 | 64,175 |
(C2×C4).79D4 = C8⋊3Q8 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).79D4 | 64,179 |
(C2×C4).80D4 = C8⋊2Q8 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).80D4 | 64,181 |
(C2×C4).81D4 = C2×D16 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).81D4 | 64,186 |
(C2×C4).82D4 = C2×SD32 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).82D4 | 64,187 |
(C2×C4).83D4 = C2×Q32 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).83D4 | 64,188 |
(C2×C4).84D4 = C4○D16 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 32 | 2 | (C2xC4).84D4 | 64,189 |
(C2×C4).85D4 = C2×C4.4D4 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).85D4 | 64,207 |
(C2×C4).86D4 = C2×C4⋊Q8 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).86D4 | 64,212 |
(C2×C4).87D4 = C22×D8 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).87D4 | 64,250 |
(C2×C4).88D4 = C22×SD16 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).88D4 | 64,251 |
(C2×C4).89D4 = C22×Q16 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).89D4 | 64,252 |
(C2×C4).90D4 = C2×C4○D8 | φ: D4/C4 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).90D4 | 64,253 |
(C2×C4).91D4 = C23⋊C8 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 16 | | (C2xC4).91D4 | 64,4 |
(C2×C4).92D4 = C22.M4(2) | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).92D4 | 64,5 |
(C2×C4).93D4 = D4⋊C8 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).93D4 | 64,6 |
(C2×C4).94D4 = C22.SD16 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 16 | | (C2xC4).94D4 | 64,8 |
(C2×C4).95D4 = C23.31D4 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 16 | | (C2xC4).95D4 | 64,9 |
(C2×C4).96D4 = C42.C22 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).96D4 | 64,10 |
(C2×C4).97D4 = C42.2C22 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).97D4 | 64,11 |
(C2×C4).98D4 = C23.8Q8 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).98D4 | 64,66 |
(C2×C4).99D4 = C23.63C23 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).99D4 | 64,68 |
(C2×C4).100D4 = C24.C22 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).100D4 | 64,69 |
(C2×C4).101D4 = SD16⋊C4 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).101D4 | 64,121 |
(C2×C4).102D4 = Q16⋊C4 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).102D4 | 64,122 |
(C2×C4).103D4 = D8⋊C4 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).103D4 | 64,123 |
(C2×C4).104D4 = D4⋊D4 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).104D4 | 64,130 |
(C2×C4).105D4 = D4.7D4 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).105D4 | 64,133 |
(C2×C4).106D4 = C23.19D4 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).106D4 | 64,163 |
(C2×C4).107D4 = C23.20D4 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).107D4 | 64,166 |
(C2×C4).108D4 = C4.D8 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).108D4 | 64,12 |
(C2×C4).109D4 = C4.10D8 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).109D4 | 64,13 |
(C2×C4).110D4 = C4.6Q16 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).110D4 | 64,14 |
(C2×C4).111D4 = C22.4Q16 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).111D4 | 64,21 |
(C2×C4).112D4 = C4.C42 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).112D4 | 64,22 |
(C2×C4).113D4 = C22.C42 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).113D4 | 64,24 |
(C2×C4).114D4 = M4(2)⋊4C4 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).114D4 | 64,25 |
(C2×C4).115D4 = C23.7Q8 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).115D4 | 64,61 |
(C2×C4).116D4 = C23.65C23 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).116D4 | 64,70 |
(C2×C4).117D4 = C24.4C4 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 16 | | (C2xC4).117D4 | 64,88 |
(C2×C4).118D4 = (C22×C8)⋊C2 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).118D4 | 64,89 |
(C2×C4).119D4 = C23.C23 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).119D4 | 64,91 |
(C2×C4).120D4 = C2×C4.D4 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 16 | | (C2xC4).120D4 | 64,92 |
(C2×C4).121D4 = C2×C4.10D4 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).121D4 | 64,93 |
(C2×C4).122D4 = M4(2).8C22 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).122D4 | 64,94 |
(C2×C4).123D4 = C23.36D4 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).123D4 | 64,98 |
(C2×C4).124D4 = C23.37D4 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 16 | | (C2xC4).124D4 | 64,99 |
(C2×C4).125D4 = C23.38D4 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).125D4 | 64,100 |
(C2×C4).126D4 = C2×C4≀C2 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 16 | | (C2xC4).126D4 | 64,101 |
(C2×C4).127D4 = C42.6C22 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).127D4 | 64,105 |
(C2×C4).128D4 = M4(2)⋊C4 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).128D4 | 64,109 |
(C2×C4).129D4 = M4(2).C4 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).129D4 | 64,111 |
(C2×C4).130D4 = C4⋊SD16 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).130D4 | 64,141 |
(C2×C4).131D4 = D4.D4 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).131D4 | 64,142 |
(C2×C4).132D4 = Q8⋊Q8 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).132D4 | 64,156 |
(C2×C4).133D4 = C4.Q16 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 64 | | (C2xC4).133D4 | 64,158 |
(C2×C4).134D4 = C2×C22⋊Q8 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 32 | | (C2xC4).134D4 | 64,204 |
(C2×C4).135D4 = C2×C8⋊C22 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 16 | | (C2xC4).135D4 | 64,254 |
(C2×C4).136D4 = D8⋊C22 | φ: D4/C22 → C2 ⊆ Aut C2×C4 | 16 | 4 | (C2xC4).136D4 | 64,256 |
(C2×C4).137D4 = Q8⋊C8 | central extension (φ=1) | 64 | | (C2xC4).137D4 | 64,7 |
(C2×C4).138D4 = C8⋊2C8 | central extension (φ=1) | 64 | | (C2xC4).138D4 | 64,15 |
(C2×C4).139D4 = C8⋊1C8 | central extension (φ=1) | 64 | | (C2xC4).139D4 | 64,16 |
(C2×C4).140D4 = C22.7C42 | central extension (φ=1) | 64 | | (C2xC4).140D4 | 64,17 |
(C2×C4).141D4 = C42⋊6C4 | central extension (φ=1) | 16 | | (C2xC4).141D4 | 64,20 |
(C2×C4).142D4 = C4×C22⋊C4 | central extension (φ=1) | 32 | | (C2xC4).142D4 | 64,58 |
(C2×C4).143D4 = C4×C4⋊C4 | central extension (φ=1) | 64 | | (C2xC4).143D4 | 64,59 |
(C2×C4).144D4 = C2×C22⋊C8 | central extension (φ=1) | 32 | | (C2xC4).144D4 | 64,87 |
(C2×C4).145D4 = C23.24D4 | central extension (φ=1) | 32 | | (C2xC4).145D4 | 64,97 |
(C2×C4).146D4 = C2×C4⋊C8 | central extension (φ=1) | 64 | | (C2xC4).146D4 | 64,103 |
(C2×C4).147D4 = C23.25D4 | central extension (φ=1) | 32 | | (C2xC4).147D4 | 64,108 |
(C2×C4).148D4 = C2×C8.C4 | central extension (φ=1) | 32 | | (C2xC4).148D4 | 64,110 |