extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1(C2×D4) = C8⋊5D4 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C4 | 32 | | C4.1(C2xD4) | 64,173 |
C4.2(C2×D4) = C8⋊4D4 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C4 | 32 | | C4.2(C2xD4) | 64,174 |
C4.3(C2×D4) = C4⋊Q16 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C4 | 64 | | C4.3(C2xD4) | 64,175 |
C4.4(C2×D4) = C8.12D4 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C4 | 32 | | C4.4(C2xD4) | 64,176 |
C4.5(C2×D4) = C8⋊3D4 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C4 | 32 | | C4.5(C2xD4) | 64,177 |
C4.6(C2×D4) = C8.2D4 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C4 | 32 | | C4.6(C2xD4) | 64,178 |
C4.7(C2×D4) = C2×D16 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C4 | 32 | | C4.7(C2xD4) | 64,186 |
C4.8(C2×D4) = C2×SD32 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C4 | 32 | | C4.8(C2xD4) | 64,187 |
C4.9(C2×D4) = C2×Q32 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C4 | 64 | | C4.9(C2xD4) | 64,188 |
C4.10(C2×D4) = C4○D16 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C4 | 32 | 2 | C4.10(C2xD4) | 64,189 |
C4.11(C2×D4) = C16⋊C22 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C4 | 16 | 4+ | C4.11(C2xD4) | 64,190 |
C4.12(C2×D4) = Q32⋊C2 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C4 | 32 | 4- | C4.12(C2xD4) | 64,191 |
C4.13(C2×D4) = C2×C4.4D4 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C4 | 32 | | C4.13(C2xD4) | 64,207 |
C4.14(C2×D4) = C2×C4⋊Q8 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C4 | 64 | | C4.14(C2xD4) | 64,212 |
C4.15(C2×D4) = C22.29C24 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C4 | 16 | | C4.15(C2xD4) | 64,216 |
C4.16(C2×D4) = C22×D8 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C4 | 32 | | C4.16(C2xD4) | 64,250 |
C4.17(C2×D4) = C22×SD16 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C4 | 32 | | C4.17(C2xD4) | 64,251 |
C4.18(C2×D4) = C22×Q16 | φ: C2×D4/C2×C4 → C2 ⊆ Aut C4 | 64 | | C4.18(C2xD4) | 64,252 |
C4.19(C2×D4) = C22⋊D8 | φ: C2×D4/D4 → C2 ⊆ Aut C4 | 16 | | C4.19(C2xD4) | 64,128 |
C4.20(C2×D4) = Q8⋊D4 | φ: C2×D4/D4 → C2 ⊆ Aut C4 | 32 | | C4.20(C2xD4) | 64,129 |
C4.21(C2×D4) = D4⋊D4 | φ: C2×D4/D4 → C2 ⊆ Aut C4 | 32 | | C4.21(C2xD4) | 64,130 |
C4.22(C2×D4) = C22⋊SD16 | φ: C2×D4/D4 → C2 ⊆ Aut C4 | 16 | | C4.22(C2xD4) | 64,131 |
C4.23(C2×D4) = C22⋊Q16 | φ: C2×D4/D4 → C2 ⊆ Aut C4 | 32 | | C4.23(C2xD4) | 64,132 |
C4.24(C2×D4) = D4.7D4 | φ: C2×D4/D4 → C2 ⊆ Aut C4 | 32 | | C4.24(C2xD4) | 64,133 |
C4.25(C2×D4) = D4⋊4D4 | φ: C2×D4/D4 → C2 ⊆ Aut C4 | 8 | 4+ | C4.25(C2xD4) | 64,134 |
C4.26(C2×D4) = D4.8D4 | φ: C2×D4/D4 → C2 ⊆ Aut C4 | 16 | 4 | C4.26(C2xD4) | 64,135 |
C4.27(C2×D4) = D4.9D4 | φ: C2×D4/D4 → C2 ⊆ Aut C4 | 16 | 4 | C4.27(C2xD4) | 64,136 |
C4.28(C2×D4) = D4.10D4 | φ: C2×D4/D4 → C2 ⊆ Aut C4 | 16 | 4- | C4.28(C2xD4) | 64,137 |
C4.29(C2×D4) = C4⋊D8 | φ: C2×D4/D4 → C2 ⊆ Aut C4 | 32 | | C4.29(C2xD4) | 64,140 |
C4.30(C2×D4) = C4⋊SD16 | φ: C2×D4/D4 → C2 ⊆ Aut C4 | 32 | | C4.30(C2xD4) | 64,141 |
C4.31(C2×D4) = D4.D4 | φ: C2×D4/D4 → C2 ⊆ Aut C4 | 32 | | C4.31(C2xD4) | 64,142 |
C4.32(C2×D4) = C4⋊2Q16 | φ: C2×D4/D4 → C2 ⊆ Aut C4 | 64 | | C4.32(C2xD4) | 64,143 |
C4.33(C2×D4) = D4.2D4 | φ: C2×D4/D4 → C2 ⊆ Aut C4 | 32 | | C4.33(C2xD4) | 64,144 |
C4.34(C2×D4) = Q8.D4 | φ: C2×D4/D4 → C2 ⊆ Aut C4 | 32 | | C4.34(C2xD4) | 64,145 |
C4.35(C2×D4) = D4.3D4 | φ: C2×D4/D4 → C2 ⊆ Aut C4 | 16 | 4 | C4.35(C2xD4) | 64,152 |
C4.36(C2×D4) = D4⋊5D4 | φ: C2×D4/D4 → C2 ⊆ Aut C4 | 16 | | C4.36(C2xD4) | 64,227 |
C4.37(C2×D4) = D4⋊6D4 | φ: C2×D4/D4 → C2 ⊆ Aut C4 | 32 | | C4.37(C2xD4) | 64,228 |
C4.38(C2×D4) = Q8⋊5D4 | φ: C2×D4/D4 → C2 ⊆ Aut C4 | 32 | | C4.38(C2xD4) | 64,229 |
C4.39(C2×D4) = D4×Q8 | φ: C2×D4/D4 → C2 ⊆ Aut C4 | 32 | | C4.39(C2xD4) | 64,230 |
C4.40(C2×D4) = Q8⋊6D4 | φ: C2×D4/D4 → C2 ⊆ Aut C4 | 32 | | C4.40(C2xD4) | 64,231 |
C4.41(C2×D4) = D4○D8 | φ: C2×D4/D4 → C2 ⊆ Aut C4 | 16 | 4+ | C4.41(C2xD4) | 64,257 |
C4.42(C2×D4) = D4○SD16 | φ: C2×D4/D4 → C2 ⊆ Aut C4 | 16 | 4 | C4.42(C2xD4) | 64,258 |
C4.43(C2×D4) = Q8○D8 | φ: C2×D4/D4 → C2 ⊆ Aut C4 | 32 | 4- | C4.43(C2xD4) | 64,259 |
C4.44(C2×D4) = C2×C4.D4 | φ: C2×D4/C23 → C2 ⊆ Aut C4 | 16 | | C4.44(C2xD4) | 64,92 |
C4.45(C2×D4) = C2×C4.10D4 | φ: C2×D4/C23 → C2 ⊆ Aut C4 | 32 | | C4.45(C2xD4) | 64,93 |
C4.46(C2×D4) = M4(2).8C22 | φ: C2×D4/C23 → C2 ⊆ Aut C4 | 16 | 4 | C4.46(C2xD4) | 64,94 |
C4.47(C2×D4) = C2×D4⋊C4 | φ: C2×D4/C23 → C2 ⊆ Aut C4 | 32 | | C4.47(C2xD4) | 64,95 |
C4.48(C2×D4) = C2×Q8⋊C4 | φ: C2×D4/C23 → C2 ⊆ Aut C4 | 64 | | C4.48(C2xD4) | 64,96 |
C4.49(C2×D4) = C23.24D4 | φ: C2×D4/C23 → C2 ⊆ Aut C4 | 32 | | C4.49(C2xD4) | 64,97 |
C4.50(C2×D4) = C23.36D4 | φ: C2×D4/C23 → C2 ⊆ Aut C4 | 32 | | C4.50(C2xD4) | 64,98 |
C4.51(C2×D4) = C23.37D4 | φ: C2×D4/C23 → C2 ⊆ Aut C4 | 16 | | C4.51(C2xD4) | 64,99 |
C4.52(C2×D4) = C23.38D4 | φ: C2×D4/C23 → C2 ⊆ Aut C4 | 32 | | C4.52(C2xD4) | 64,100 |
C4.53(C2×D4) = C8⋊8D4 | φ: C2×D4/C23 → C2 ⊆ Aut C4 | 32 | | C4.53(C2xD4) | 64,146 |
C4.54(C2×D4) = C8⋊7D4 | φ: C2×D4/C23 → C2 ⊆ Aut C4 | 32 | | C4.54(C2xD4) | 64,147 |
C4.55(C2×D4) = C8.18D4 | φ: C2×D4/C23 → C2 ⊆ Aut C4 | 32 | | C4.55(C2xD4) | 64,148 |
C4.56(C2×D4) = C8⋊D4 | φ: C2×D4/C23 → C2 ⊆ Aut C4 | 32 | | C4.56(C2xD4) | 64,149 |
C4.57(C2×D4) = C8⋊2D4 | φ: C2×D4/C23 → C2 ⊆ Aut C4 | 32 | | C4.57(C2xD4) | 64,150 |
C4.58(C2×D4) = C8.D4 | φ: C2×D4/C23 → C2 ⊆ Aut C4 | 32 | | C4.58(C2xD4) | 64,151 |
C4.59(C2×D4) = D4.4D4 | φ: C2×D4/C23 → C2 ⊆ Aut C4 | 16 | 4+ | C4.59(C2xD4) | 64,153 |
C4.60(C2×D4) = D4.5D4 | φ: C2×D4/C23 → C2 ⊆ Aut C4 | 32 | 4- | C4.60(C2xD4) | 64,154 |
C4.61(C2×D4) = C2×C22⋊Q8 | φ: C2×D4/C23 → C2 ⊆ Aut C4 | 32 | | C4.61(C2xD4) | 64,204 |
C4.62(C2×D4) = C23.38C23 | φ: C2×D4/C23 → C2 ⊆ Aut C4 | 32 | | C4.62(C2xD4) | 64,217 |
C4.63(C2×D4) = C22.31C24 | φ: C2×D4/C23 → C2 ⊆ Aut C4 | 32 | | C4.63(C2xD4) | 64,218 |
C4.64(C2×D4) = C2×C8⋊C22 | φ: C2×D4/C23 → C2 ⊆ Aut C4 | 16 | | C4.64(C2xD4) | 64,254 |
C4.65(C2×D4) = C2×C8.C22 | φ: C2×D4/C23 → C2 ⊆ Aut C4 | 32 | | C4.65(C2xD4) | 64,255 |
C4.66(C2×D4) = C2×C22⋊C8 | central extension (φ=1) | 32 | | C4.66(C2xD4) | 64,87 |
C4.67(C2×D4) = C24.4C4 | central extension (φ=1) | 16 | | C4.67(C2xD4) | 64,88 |
C4.68(C2×D4) = (C22×C8)⋊C2 | central extension (φ=1) | 32 | | C4.68(C2xD4) | 64,89 |
C4.69(C2×D4) = C2×C4≀C2 | central extension (φ=1) | 16 | | C4.69(C2xD4) | 64,101 |
C4.70(C2×D4) = C42⋊C22 | central extension (φ=1) | 16 | 4 | C4.70(C2xD4) | 64,102 |
C4.71(C2×D4) = C2×C4⋊C8 | central extension (φ=1) | 64 | | C4.71(C2xD4) | 64,103 |
C4.72(C2×D4) = C4⋊M4(2) | central extension (φ=1) | 32 | | C4.72(C2xD4) | 64,104 |
C4.73(C2×D4) = C42.6C22 | central extension (φ=1) | 32 | | C4.73(C2xD4) | 64,105 |
C4.74(C2×D4) = C2×C8.C4 | central extension (φ=1) | 32 | | C4.74(C2xD4) | 64,110 |
C4.75(C2×D4) = M4(2).C4 | central extension (φ=1) | 16 | 4 | C4.75(C2xD4) | 64,111 |
C4.76(C2×D4) = C8×D4 | central extension (φ=1) | 32 | | C4.76(C2xD4) | 64,115 |
C4.77(C2×D4) = C8⋊9D4 | central extension (φ=1) | 32 | | C4.77(C2xD4) | 64,116 |
C4.78(C2×D4) = C8⋊6D4 | central extension (φ=1) | 32 | | C4.78(C2xD4) | 64,117 |
C4.79(C2×D4) = C8○D8 | central extension (φ=1) | 16 | 2 | C4.79(C2xD4) | 64,124 |
C4.80(C2×D4) = C8.26D4 | central extension (φ=1) | 16 | 4 | C4.80(C2xD4) | 64,125 |
C4.81(C2×D4) = C22.19C24 | central extension (φ=1) | 16 | | C4.81(C2xD4) | 64,206 |
C4.82(C2×D4) = C22.26C24 | central extension (φ=1) | 32 | | C4.82(C2xD4) | 64,213 |
C4.83(C2×D4) = C2×C4○D8 | central extension (φ=1) | 32 | | C4.83(C2xD4) | 64,253 |
C4.84(C2×D4) = D8⋊C22 | central extension (φ=1) | 16 | 4 | C4.84(C2xD4) | 64,256 |