Copied to
clipboard

G = D8:9D4order 128 = 27

3rd semidirect product of D8 and D4 acting via D4/C22=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: D8:9D4, C42.31C23, C4.1182+ 1+4, D42:3C2, C8:8(C2xD4), C2.48D42, D4:3(C2xD4), C8:9D4:1C2, D4:5D4:1C2, C4:D8:33C2, C8:3D4:16C2, C8:2D4:19C2, C8:8D4:17C2, C4:C8:23C22, C4:C4.146D4, D8:C4:19C2, D4:D4:31C2, C22:D8:25C2, (C2xD4).305D4, C2.37(D4oD8), (C2xD8):27C22, (C4xD4):17C22, (C22xD8):20C2, C4:D4:7C22, C4:1D4:9C22, (C2xC8).81C23, C4.78(C22xD4), C8:C4:14C22, C4.Q8:22C22, C22:Q8:7C22, C22:SD16:14C2, D4.2D4:34C2, C4:C4.203C23, C22:C8:19C22, C22:2(C8:C22), (C2xC4).462C24, C22:C4.156D4, (C22xC8):22C22, Q8:C4:7C22, C23.459(C2xD4), D4:C4:34C22, (C2xSD16):25C22, (C2xD4).202C23, C4.4D4:11C22, (C22xD4):26C22, (C2xQ8).190C23, (C2xM4(2)):19C22, (C22xC4).316C23, C22.722(C22xD4), (C2xC8:C22):26C2, (C2xC4).586(C2xD4), C2.70(C2xC8:C22), (C2xC4oD4):11C22, SmallGroup(128,1996)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC4 — D8:9D4
C1C2C22C2xC4C2xD4C22xD4C22xD8 — D8:9D4
C1C2C2xC4 — D8:9D4
C1C22C4xD4 — D8:9D4
C1C2C2C2xC4 — D8:9D4

Generators and relations for D8:9D4
 G = < a,b,c,d | a8=b2=c4=d2=1, bab=a-1, cac-1=dad=a3, cbc-1=dbd=a2b, dcd=c-1 >

Subgroups: 720 in 284 conjugacy classes, 96 normal (84 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C8, C2xC4, C2xC4, D4, D4, Q8, C23, C23, C42, C22:C4, C22:C4, C4:C4, C4:C4, C2xC8, C2xC8, M4(2), D8, D8, SD16, C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C4oD4, C24, C8:C4, C22:C8, D4:C4, Q8:C4, C4:C8, C4.Q8, C2xC22:C4, C4xD4, C22wrC2, C4:D4, C4:D4, C22:Q8, C22.D4, C4.4D4, C4:1D4, C22xC8, C2xM4(2), C2xD8, C2xD8, C2xSD16, C8:C22, C22xD4, C22xD4, C2xC4oD4, C8:9D4, D8:C4, C22:D8, D4:D4, C22:SD16, C4:D8, D4.2D4, C8:8D4, C8:2D4, C8:3D4, D42, D4:5D4, C22xD8, C2xC8:C22, D8:9D4
Quotients: C1, C2, C22, D4, C23, C2xD4, C24, C8:C22, C22xD4, 2+ 1+4, D42, C2xC8:C22, D4oD8, D8:9D4

Character table of D8:9D4

 class 12A2B2C2D2E2F2G2H2I2J2K2L2M4A4B4C4D4E4F4G4H4I8A8B8C8D8E8F
 size 11112244444888224444888444488
ρ111111111111111111111111111111    trivial
ρ21111-1-1-11-1-11-11-111-1-111-1111-11-11-1    linear of order 2
ρ31111111-111-1-11-111111111-1-1-1-1-1-1-1    linear of order 2
ρ41111-1-1-1-1-1-1-111111-1-111-11-1-11-11-11    linear of order 2
ρ5111111-11-1111-11111111-1-11-1-1-1-1-1-1    linear of order 2
ρ61111-1-1111-11-1-1-111-1-1111-11-11-11-11    linear of order 2
ρ7111111-1-1-11-1-1-1-1111111-1-1-1111111    linear of order 2
ρ81111-1-11-11-1-11-1111-1-1111-1-11-11-11-1    linear of order 2
ρ9111111111-1111-1111-1-1-1-1-1-11111-1-1    linear of order 2
ρ101111-1-1-11-111-11111-11-1-11-1-11-11-1-11    linear of order 2
ρ111111111-11-1-1-111111-1-1-1-1-11-1-1-1-111    linear of order 2
ρ121111-1-1-1-1-11-111-111-11-1-11-11-11-111-1    linear of order 2
ρ13111111-11-1-111-1-1111-1-1-111-1-1-1-1-111    linear of order 2
ρ141111-1-111111-1-1111-11-1-1-11-1-11-111-1    linear of order 2
ρ15111111-1-1-1-1-1-1-11111-1-1-11111111-1-1    linear of order 2
ρ161111-1-11-111-11-1-111-11-1-1-1111-11-1-11    linear of order 2
ρ172-22-200-2-2202000-220000000020-200    orthogonal lifted from D4
ρ182-22-2002-2-202000-2200000000-20200    orthogonal lifted from D4
ρ192222-2-2000-20000-2-222-22000000000    orthogonal lifted from D4
ρ202222-2-200020000-2-22-22-2000000000    orthogonal lifted from D4
ρ212-22-200-2220-2000-2200000000-20200    orthogonal lifted from D4
ρ2222222200020000-2-2-2-2-22000000000    orthogonal lifted from D4
ρ23222222000-20000-2-2-222-2000000000    orthogonal lifted from D4
ρ242-22-20022-20-2000-220000000020-200    orthogonal lifted from D4
ρ254-4-444-400000000000000000000000    orthogonal lifted from C8:C22
ρ264-44-400000000004-40000000000000    orthogonal lifted from 2+ 1+4
ρ274-4-44-4400000000000000000000000    orthogonal lifted from C8:C22
ρ2844-4-40000000000000000000220-22000    orthogonal lifted from D4oD8
ρ2944-4-40000000000000000000-22022000    orthogonal lifted from D4oD8

Smallest permutation representation of D8:9D4
On 32 points
Generators in S32
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 18)(2 17)(3 24)(4 23)(5 22)(6 21)(7 20)(8 19)(9 25)(10 32)(11 31)(12 30)(13 29)(14 28)(15 27)(16 26)
(1 30 19 13)(2 25 20 16)(3 28 21 11)(4 31 22 14)(5 26 23 9)(6 29 24 12)(7 32 17 15)(8 27 18 10)
(1 13)(2 16)(3 11)(4 14)(5 9)(6 12)(7 15)(8 10)(17 32)(18 27)(19 30)(20 25)(21 28)(22 31)(23 26)(24 29)

G:=sub<Sym(32)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,18)(2,17)(3,24)(4,23)(5,22)(6,21)(7,20)(8,19)(9,25)(10,32)(11,31)(12,30)(13,29)(14,28)(15,27)(16,26), (1,30,19,13)(2,25,20,16)(3,28,21,11)(4,31,22,14)(5,26,23,9)(6,29,24,12)(7,32,17,15)(8,27,18,10), (1,13)(2,16)(3,11)(4,14)(5,9)(6,12)(7,15)(8,10)(17,32)(18,27)(19,30)(20,25)(21,28)(22,31)(23,26)(24,29)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,18)(2,17)(3,24)(4,23)(5,22)(6,21)(7,20)(8,19)(9,25)(10,32)(11,31)(12,30)(13,29)(14,28)(15,27)(16,26), (1,30,19,13)(2,25,20,16)(3,28,21,11)(4,31,22,14)(5,26,23,9)(6,29,24,12)(7,32,17,15)(8,27,18,10), (1,13)(2,16)(3,11)(4,14)(5,9)(6,12)(7,15)(8,10)(17,32)(18,27)(19,30)(20,25)(21,28)(22,31)(23,26)(24,29) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,18),(2,17),(3,24),(4,23),(5,22),(6,21),(7,20),(8,19),(9,25),(10,32),(11,31),(12,30),(13,29),(14,28),(15,27),(16,26)], [(1,30,19,13),(2,25,20,16),(3,28,21,11),(4,31,22,14),(5,26,23,9),(6,29,24,12),(7,32,17,15),(8,27,18,10)], [(1,13),(2,16),(3,11),(4,14),(5,9),(6,12),(7,15),(8,10),(17,32),(18,27),(19,30),(20,25),(21,28),(22,31),(23,26),(24,29)]])

Matrix representation of D8:9D4 in GL6(F17)

100000
010000
000600
0014600
0000116
0000140
,
100000
010000
0001100
0014000
0000611
0000311
,
0160000
100000
000010
000001
0016000
0001600
,
0160000
1600000
000010
000001
001000
000100

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,14,0,0,0,0,6,6,0,0,0,0,0,0,11,14,0,0,0,0,6,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,14,0,0,0,0,11,0,0,0,0,0,0,0,6,3,0,0,0,0,11,11],[0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,1,0,0,0,0,0,0,1,0,0],[0,16,0,0,0,0,16,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0] >;

D8:9D4 in GAP, Magma, Sage, TeX

D_8\rtimes_9D_4
% in TeX

G:=Group("D8:9D4");
// GroupNames label

G:=SmallGroup(128,1996);
// by ID

G=gap.SmallGroup(128,1996);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,758,346,2804,1411,375,172]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^4=d^2=1,b*a*b=a^-1,c*a*c^-1=d*a*d=a^3,c*b*c^-1=d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

Export

Character table of D8:9D4 in TeX

׿
x
:
Z
F
o
wr
Q
<