Extensions 1→N→G→Q→1 with N=C6xQ8 and Q=C2

Direct product G=NxQ with N=C6xQ8 and Q=C2
dρLabelID
Q8xC2xC696Q8xC2xC696,222

Semidirect products G=N:Q with N=C6xQ8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6xQ8):1C2 = C2xQ8:2S3φ: C2/C1C2 ⊆ Out C6xQ848(C6xQ8):1C296,148
(C6xQ8):2C2 = Q8.11D6φ: C2/C1C2 ⊆ Out C6xQ8484(C6xQ8):2C296,149
(C6xQ8):3C2 = D6:3Q8φ: C2/C1C2 ⊆ Out C6xQ848(C6xQ8):3C296,153
(C6xQ8):4C2 = C12.23D4φ: C2/C1C2 ⊆ Out C6xQ848(C6xQ8):4C296,154
(C6xQ8):5C2 = C2xS3xQ8φ: C2/C1C2 ⊆ Out C6xQ848(C6xQ8):5C296,212
(C6xQ8):6C2 = C2xQ8:3S3φ: C2/C1C2 ⊆ Out C6xQ848(C6xQ8):6C296,213
(C6xQ8):7C2 = Q8.15D6φ: C2/C1C2 ⊆ Out C6xQ8484(C6xQ8):7C296,214
(C6xQ8):8C2 = C3xC22:Q8φ: C2/C1C2 ⊆ Out C6xQ848(C6xQ8):8C296,169
(C6xQ8):9C2 = C3xC4.4D4φ: C2/C1C2 ⊆ Out C6xQ848(C6xQ8):9C296,171
(C6xQ8):10C2 = C6xSD16φ: C2/C1C2 ⊆ Out C6xQ848(C6xQ8):10C296,180
(C6xQ8):11C2 = C3xC8.C22φ: C2/C1C2 ⊆ Out C6xQ8484(C6xQ8):11C296,184
(C6xQ8):12C2 = C3x2- 1+4φ: C2/C1C2 ⊆ Out C6xQ8484(C6xQ8):12C296,225
(C6xQ8):13C2 = C6xC4oD4φ: trivial image48(C6xQ8):13C296,223

Non-split extensions G=N.Q with N=C6xQ8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6xQ8).1C2 = Q8:2Dic3φ: C2/C1C2 ⊆ Out C6xQ896(C6xQ8).1C296,42
(C6xQ8).2C2 = C12.10D4φ: C2/C1C2 ⊆ Out C6xQ8484(C6xQ8).2C296,43
(C6xQ8).3C2 = C2xC3:Q16φ: C2/C1C2 ⊆ Out C6xQ896(C6xQ8).3C296,150
(C6xQ8).4C2 = Dic3:Q8φ: C2/C1C2 ⊆ Out C6xQ896(C6xQ8).4C296,151
(C6xQ8).5C2 = Q8xDic3φ: C2/C1C2 ⊆ Out C6xQ896(C6xQ8).5C296,152
(C6xQ8).6C2 = C3xC4.10D4φ: C2/C1C2 ⊆ Out C6xQ8484(C6xQ8).6C296,51
(C6xQ8).7C2 = C3xQ8:C4φ: C2/C1C2 ⊆ Out C6xQ896(C6xQ8).7C296,53
(C6xQ8).8C2 = C3xC4:Q8φ: C2/C1C2 ⊆ Out C6xQ896(C6xQ8).8C296,175
(C6xQ8).9C2 = C6xQ16φ: C2/C1C2 ⊆ Out C6xQ896(C6xQ8).9C296,181
(C6xQ8).10C2 = Q8xC12φ: trivial image96(C6xQ8).10C296,166

׿
x
:
Z
F
o
wr
Q
<