extension | φ:Q→Aut N | d | ρ | Label | ID |
C4.1(C4×S3) = C6.D8 | φ: C4×S3/Dic3 → C2 ⊆ Aut C4 | 48 | | C4.1(C4xS3) | 96,16 |
C4.2(C4×S3) = C6.SD16 | φ: C4×S3/Dic3 → C2 ⊆ Aut C4 | 96 | | C4.2(C4xS3) | 96,17 |
C4.3(C4×S3) = D12⋊C4 | φ: C4×S3/Dic3 → C2 ⊆ Aut C4 | 24 | 4 | C4.3(C4xS3) | 96,32 |
C4.4(C4×S3) = Dic6⋊C4 | φ: C4×S3/Dic3 → C2 ⊆ Aut C4 | 96 | | C4.4(C4xS3) | 96,94 |
C4.5(C4×S3) = D12.C4 | φ: C4×S3/Dic3 → C2 ⊆ Aut C4 | 48 | 4 | C4.5(C4xS3) | 96,114 |
C4.6(C4×S3) = C42⋊4S3 | φ: C4×S3/C12 → C2 ⊆ Aut C4 | 24 | 2 | C4.6(C4xS3) | 96,12 |
C4.7(C4×S3) = C2.Dic12 | φ: C4×S3/C12 → C2 ⊆ Aut C4 | 96 | | C4.7(C4xS3) | 96,23 |
C4.8(C4×S3) = C2.D24 | φ: C4×S3/C12 → C2 ⊆ Aut C4 | 48 | | C4.8(C4xS3) | 96,28 |
C4.9(C4×S3) = C4×Dic6 | φ: C4×S3/C12 → C2 ⊆ Aut C4 | 96 | | C4.9(C4xS3) | 96,75 |
C4.10(C4×S3) = C8○D12 | φ: C4×S3/C12 → C2 ⊆ Aut C4 | 48 | 2 | C4.10(C4xS3) | 96,108 |
C4.11(C4×S3) = C6.Q16 | φ: C4×S3/D6 → C2 ⊆ Aut C4 | 96 | | C4.11(C4xS3) | 96,14 |
C4.12(C4×S3) = C12.Q8 | φ: C4×S3/D6 → C2 ⊆ Aut C4 | 96 | | C4.12(C4xS3) | 96,15 |
C4.13(C4×S3) = C12.53D4 | φ: C4×S3/D6 → C2 ⊆ Aut C4 | 48 | 4 | C4.13(C4xS3) | 96,29 |
C4.14(C4×S3) = C4⋊C4⋊7S3 | φ: C4×S3/D6 → C2 ⊆ Aut C4 | 48 | | C4.14(C4xS3) | 96,99 |
C4.15(C4×S3) = S3×M4(2) | φ: C4×S3/D6 → C2 ⊆ Aut C4 | 24 | 4 | C4.15(C4xS3) | 96,113 |
C4.16(C4×S3) = S3×C16 | central extension (φ=1) | 48 | 2 | C4.16(C4xS3) | 96,4 |
C4.17(C4×S3) = D6.C8 | central extension (φ=1) | 48 | 2 | C4.17(C4xS3) | 96,5 |
C4.18(C4×S3) = C4×C3⋊C8 | central extension (φ=1) | 96 | | C4.18(C4xS3) | 96,9 |
C4.19(C4×S3) = C42.S3 | central extension (φ=1) | 96 | | C4.19(C4xS3) | 96,10 |
C4.20(C4×S3) = C8×Dic3 | central extension (φ=1) | 96 | | C4.20(C4xS3) | 96,20 |
C4.21(C4×S3) = C24⋊C4 | central extension (φ=1) | 96 | | C4.21(C4xS3) | 96,22 |
C4.22(C4×S3) = C42⋊2S3 | central extension (φ=1) | 48 | | C4.22(C4xS3) | 96,79 |
C4.23(C4×S3) = S3×C2×C8 | central extension (φ=1) | 48 | | C4.23(C4xS3) | 96,106 |
C4.24(C4×S3) = C2×C8⋊S3 | central extension (φ=1) | 48 | | C4.24(C4xS3) | 96,107 |