Extensions 1→N→G→Q→1 with N=C4 and Q=C4×S3

Direct product G=N×Q with N=C4 and Q=C4×S3
dρLabelID
S3×C4248S3xC4^296,78

Semidirect products G=N:Q with N=C4 and Q=C4×S3
extensionφ:Q→Aut NdρLabelID
C41(C4×S3) = Dic35D4φ: C4×S3/Dic3C2 ⊆ Aut C448C4:1(C4xS3)96,100
C42(C4×S3) = C4×D12φ: C4×S3/C12C2 ⊆ Aut C448C4:2(C4xS3)96,80
C43(C4×S3) = S3×C4⋊C4φ: C4×S3/D6C2 ⊆ Aut C448C4:3(C4xS3)96,98

Non-split extensions G=N.Q with N=C4 and Q=C4×S3
extensionφ:Q→Aut NdρLabelID
C4.1(C4×S3) = C6.D8φ: C4×S3/Dic3C2 ⊆ Aut C448C4.1(C4xS3)96,16
C4.2(C4×S3) = C6.SD16φ: C4×S3/Dic3C2 ⊆ Aut C496C4.2(C4xS3)96,17
C4.3(C4×S3) = D12⋊C4φ: C4×S3/Dic3C2 ⊆ Aut C4244C4.3(C4xS3)96,32
C4.4(C4×S3) = Dic6⋊C4φ: C4×S3/Dic3C2 ⊆ Aut C496C4.4(C4xS3)96,94
C4.5(C4×S3) = D12.C4φ: C4×S3/Dic3C2 ⊆ Aut C4484C4.5(C4xS3)96,114
C4.6(C4×S3) = C424S3φ: C4×S3/C12C2 ⊆ Aut C4242C4.6(C4xS3)96,12
C4.7(C4×S3) = C2.Dic12φ: C4×S3/C12C2 ⊆ Aut C496C4.7(C4xS3)96,23
C4.8(C4×S3) = C2.D24φ: C4×S3/C12C2 ⊆ Aut C448C4.8(C4xS3)96,28
C4.9(C4×S3) = C4×Dic6φ: C4×S3/C12C2 ⊆ Aut C496C4.9(C4xS3)96,75
C4.10(C4×S3) = C8○D12φ: C4×S3/C12C2 ⊆ Aut C4482C4.10(C4xS3)96,108
C4.11(C4×S3) = C6.Q16φ: C4×S3/D6C2 ⊆ Aut C496C4.11(C4xS3)96,14
C4.12(C4×S3) = C12.Q8φ: C4×S3/D6C2 ⊆ Aut C496C4.12(C4xS3)96,15
C4.13(C4×S3) = C12.53D4φ: C4×S3/D6C2 ⊆ Aut C4484C4.13(C4xS3)96,29
C4.14(C4×S3) = C4⋊C47S3φ: C4×S3/D6C2 ⊆ Aut C448C4.14(C4xS3)96,99
C4.15(C4×S3) = S3×M4(2)φ: C4×S3/D6C2 ⊆ Aut C4244C4.15(C4xS3)96,113
C4.16(C4×S3) = S3×C16central extension (φ=1)482C4.16(C4xS3)96,4
C4.17(C4×S3) = D6.C8central extension (φ=1)482C4.17(C4xS3)96,5
C4.18(C4×S3) = C4×C3⋊C8central extension (φ=1)96C4.18(C4xS3)96,9
C4.19(C4×S3) = C42.S3central extension (φ=1)96C4.19(C4xS3)96,10
C4.20(C4×S3) = C8×Dic3central extension (φ=1)96C4.20(C4xS3)96,20
C4.21(C4×S3) = C24⋊C4central extension (φ=1)96C4.21(C4xS3)96,22
C4.22(C4×S3) = C422S3central extension (φ=1)48C4.22(C4xS3)96,79
C4.23(C4×S3) = S3×C2×C8central extension (φ=1)48C4.23(C4xS3)96,106
C4.24(C4×S3) = C2×C8⋊S3central extension (φ=1)48C4.24(C4xS3)96,107

׿
×
𝔽