Extensions 1→N→G→Q→1 with N=C6 and Q=D8

Direct product G=N×Q with N=C6 and Q=D8
dρLabelID
C6×D848C6xD896,179

Semidirect products G=N:Q with N=C6 and Q=D8
extensionφ:Q→Aut NdρLabelID
C61D8 = C2×D24φ: D8/C8C2 ⊆ Aut C648C6:1D896,110
C62D8 = C2×D4⋊S3φ: D8/D4C2 ⊆ Aut C648C6:2D896,138

Non-split extensions G=N.Q with N=C6 and Q=D8
extensionφ:Q→Aut NdρLabelID
C6.1D8 = D48φ: D8/C8C2 ⊆ Aut C6482+C6.1D896,6
C6.2D8 = C48⋊C2φ: D8/C8C2 ⊆ Aut C6482C6.2D896,7
C6.3D8 = Dic24φ: D8/C8C2 ⊆ Aut C6962-C6.3D896,8
C6.4D8 = C241C4φ: D8/C8C2 ⊆ Aut C696C6.4D896,25
C6.5D8 = C2.D24φ: D8/C8C2 ⊆ Aut C648C6.5D896,28
C6.6D8 = C6.Q16φ: D8/D4C2 ⊆ Aut C696C6.6D896,14
C6.7D8 = C6.D8φ: D8/D4C2 ⊆ Aut C648C6.7D896,16
C6.8D8 = C3⋊D16φ: D8/D4C2 ⊆ Aut C6484+C6.8D896,33
C6.9D8 = D8.S3φ: D8/D4C2 ⊆ Aut C6484-C6.9D896,34
C6.10D8 = C8.6D6φ: D8/D4C2 ⊆ Aut C6484+C6.10D896,35
C6.11D8 = C3⋊Q32φ: D8/D4C2 ⊆ Aut C6964-C6.11D896,36
C6.12D8 = D4⋊Dic3φ: D8/D4C2 ⊆ Aut C648C6.12D896,39
C6.13D8 = C3×D4⋊C4central extension (φ=1)48C6.13D896,52
C6.14D8 = C3×C2.D8central extension (φ=1)96C6.14D896,57
C6.15D8 = C3×D16central extension (φ=1)482C6.15D896,61
C6.16D8 = C3×SD32central extension (φ=1)482C6.16D896,62
C6.17D8 = C3×Q32central extension (φ=1)962C6.17D896,63

׿
×
𝔽