direct product, metacyclic, supersoluble, monomial, Z-group, 5-hyperelementary
Aliases: C2×C11⋊C5, C22⋊C5, C11⋊2C10, SmallGroup(110,2)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C11 — C11⋊C5 — C2×C11⋊C5 |
C11 — C2×C11⋊C5 |
Generators and relations for C2×C11⋊C5
G = < a,b,c | a2=b11=c5=1, ab=ba, ac=ca, cbc-1=b3 >
Character table of C2×C11⋊C5
class | 1 | 2 | 5A | 5B | 5C | 5D | 10A | 10B | 10C | 10D | 11A | 11B | 22A | 22B | |
size | 1 | 1 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 5 | 5 | 5 | 5 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | ζ52 | ζ53 | ζ5 | ζ54 | -ζ52 | -ζ53 | -ζ5 | -ζ54 | 1 | 1 | -1 | -1 | linear of order 10 |
ρ4 | 1 | 1 | ζ53 | ζ52 | ζ54 | ζ5 | ζ53 | ζ52 | ζ54 | ζ5 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ5 | 1 | -1 | ζ54 | ζ5 | ζ52 | ζ53 | -ζ54 | -ζ5 | -ζ52 | -ζ53 | 1 | 1 | -1 | -1 | linear of order 10 |
ρ6 | 1 | 1 | ζ5 | ζ54 | ζ53 | ζ52 | ζ5 | ζ54 | ζ53 | ζ52 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ7 | 1 | -1 | ζ5 | ζ54 | ζ53 | ζ52 | -ζ5 | -ζ54 | -ζ53 | -ζ52 | 1 | 1 | -1 | -1 | linear of order 10 |
ρ8 | 1 | 1 | ζ52 | ζ53 | ζ5 | ζ54 | ζ52 | ζ53 | ζ5 | ζ54 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ9 | 1 | 1 | ζ54 | ζ5 | ζ52 | ζ53 | ζ54 | ζ5 | ζ52 | ζ53 | 1 | 1 | 1 | 1 | linear of order 5 |
ρ10 | 1 | -1 | ζ53 | ζ52 | ζ54 | ζ5 | -ζ53 | -ζ52 | -ζ54 | -ζ5 | 1 | 1 | -1 | -1 | linear of order 10 |
ρ11 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-11/2 | -1-√-11/2 | -1-√-11/2 | -1+√-11/2 | complex lifted from C11⋊C5 |
ρ12 | 5 | -5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-11/2 | -1+√-11/2 | 1-√-11/2 | 1+√-11/2 | complex faithful |
ρ13 | 5 | -5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-11/2 | -1-√-11/2 | 1+√-11/2 | 1-√-11/2 | complex faithful |
ρ14 | 5 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-11/2 | -1+√-11/2 | -1+√-11/2 | -1-√-11/2 | complex lifted from C11⋊C5 |
(1 12)(2 13)(3 14)(4 15)(5 16)(6 17)(7 18)(8 19)(9 20)(10 21)(11 22)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)
(2 5 6 10 4)(3 9 11 8 7)(13 16 17 21 15)(14 20 22 19 18)
G:=sub<Sym(22)| (1,12)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22), (2,5,6,10,4)(3,9,11,8,7)(13,16,17,21,15)(14,20,22,19,18)>;
G:=Group( (1,12)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22), (2,5,6,10,4)(3,9,11,8,7)(13,16,17,21,15)(14,20,22,19,18) );
G=PermutationGroup([[(1,12),(2,13),(3,14),(4,15),(5,16),(6,17),(7,18),(8,19),(9,20),(10,21),(11,22)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22)], [(2,5,6,10,4),(3,9,11,8,7),(13,16,17,21,15),(14,20,22,19,18)]])
G:=TransitiveGroup(22,5);
C2×C11⋊C5 is a maximal subgroup of
C11⋊C20
Matrix representation of C2×C11⋊C5 ►in GL5(𝔽3)
2 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 2 |
1 | 0 | 0 | 0 | 2 |
0 | 0 | 1 | 2 | 1 |
1 | 0 | 0 | 2 | 2 |
1 | 0 | 0 | 1 | 1 |
2 | 2 | 0 | 2 | 0 |
1 | 0 | 0 | 1 | 2 |
0 | 0 | 1 | 1 | 2 |
0 | 0 | 0 | 0 | 1 |
0 | 2 | 0 | 1 | 1 |
0 | 0 | 0 | 1 | 1 |
G:=sub<GL(5,GF(3))| [2,0,0,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,2,0,0,0,0,0,2],[1,0,1,1,2,0,0,0,0,2,0,1,0,0,0,0,2,2,1,2,2,1,2,1,0],[1,0,0,0,0,0,0,0,2,0,0,1,0,0,0,1,1,0,1,1,2,2,1,1,1] >;
C2×C11⋊C5 in GAP, Magma, Sage, TeX
C_2\times C_{11}\rtimes C_5
% in TeX
G:=Group("C2xC11:C5");
// GroupNames label
G:=SmallGroup(110,2);
// by ID
G=gap.SmallGroup(110,2);
# by ID
G:=PCGroup([3,-2,-5,-11,185]);
// Polycyclic
G:=Group<a,b,c|a^2=b^11=c^5=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^3>;
// generators/relations
Export
Subgroup lattice of C2×C11⋊C5 in TeX
Character table of C2×C11⋊C5 in TeX