metacyclic, supersoluble, monomial, Z-group
Aliases: C11⋊C20, C2.F11, C22.C10, Dic11⋊C5, C11⋊C5⋊C4, (C2×C11⋊C5).C2, SmallGroup(220,1)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C11 — C22 — C2×C11⋊C5 — C11⋊C20 |
C11 — C11⋊C20 |
Generators and relations for C11⋊C20
G = < a,b | a11=b20=1, bab-1=a2 >
Character table of C11⋊C20
class | 1 | 2 | 4A | 4B | 5A | 5B | 5C | 5D | 10A | 10B | 10C | 10D | 11 | 20A | 20B | 20C | 20D | 20E | 20F | 20G | 20H | 22 | |
size | 1 | 1 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 10 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 10 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | -i | i | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -i | -i | i | -i | i | -i | i | i | -1 | linear of order 4 |
ρ4 | 1 | -1 | i | -i | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | i | i | -i | i | -i | i | -i | -i | -1 | linear of order 4 |
ρ5 | 1 | 1 | -1 | -1 | ζ5 | ζ53 | ζ52 | ζ54 | ζ53 | ζ52 | ζ5 | ζ54 | 1 | -ζ53 | -ζ52 | -ζ54 | -ζ54 | -ζ5 | -ζ5 | -ζ53 | -ζ52 | 1 | linear of order 10 |
ρ6 | 1 | 1 | -1 | -1 | ζ54 | ζ52 | ζ53 | ζ5 | ζ52 | ζ53 | ζ54 | ζ5 | 1 | -ζ52 | -ζ53 | -ζ5 | -ζ5 | -ζ54 | -ζ54 | -ζ52 | -ζ53 | 1 | linear of order 10 |
ρ7 | 1 | 1 | 1 | 1 | ζ54 | ζ52 | ζ53 | ζ5 | ζ52 | ζ53 | ζ54 | ζ5 | 1 | ζ52 | ζ53 | ζ5 | ζ5 | ζ54 | ζ54 | ζ52 | ζ53 | 1 | linear of order 5 |
ρ8 | 1 | 1 | 1 | 1 | ζ53 | ζ54 | ζ5 | ζ52 | ζ54 | ζ5 | ζ53 | ζ52 | 1 | ζ54 | ζ5 | ζ52 | ζ52 | ζ53 | ζ53 | ζ54 | ζ5 | 1 | linear of order 5 |
ρ9 | 1 | 1 | -1 | -1 | ζ52 | ζ5 | ζ54 | ζ53 | ζ5 | ζ54 | ζ52 | ζ53 | 1 | -ζ5 | -ζ54 | -ζ53 | -ζ53 | -ζ52 | -ζ52 | -ζ5 | -ζ54 | 1 | linear of order 10 |
ρ10 | 1 | 1 | -1 | -1 | ζ53 | ζ54 | ζ5 | ζ52 | ζ54 | ζ5 | ζ53 | ζ52 | 1 | -ζ54 | -ζ5 | -ζ52 | -ζ52 | -ζ53 | -ζ53 | -ζ54 | -ζ5 | 1 | linear of order 10 |
ρ11 | 1 | 1 | 1 | 1 | ζ5 | ζ53 | ζ52 | ζ54 | ζ53 | ζ52 | ζ5 | ζ54 | 1 | ζ53 | ζ52 | ζ54 | ζ54 | ζ5 | ζ5 | ζ53 | ζ52 | 1 | linear of order 5 |
ρ12 | 1 | 1 | 1 | 1 | ζ52 | ζ5 | ζ54 | ζ53 | ζ5 | ζ54 | ζ52 | ζ53 | 1 | ζ5 | ζ54 | ζ53 | ζ53 | ζ52 | ζ52 | ζ5 | ζ54 | 1 | linear of order 5 |
ρ13 | 1 | -1 | -i | i | ζ53 | ζ54 | ζ5 | ζ52 | -ζ54 | -ζ5 | -ζ53 | -ζ52 | 1 | ζ43ζ54 | ζ43ζ5 | ζ4ζ52 | ζ43ζ52 | ζ4ζ53 | ζ43ζ53 | ζ4ζ54 | ζ4ζ5 | -1 | linear of order 20 |
ρ14 | 1 | -1 | i | -i | ζ52 | ζ5 | ζ54 | ζ53 | -ζ5 | -ζ54 | -ζ52 | -ζ53 | 1 | ζ4ζ5 | ζ4ζ54 | ζ43ζ53 | ζ4ζ53 | ζ43ζ52 | ζ4ζ52 | ζ43ζ5 | ζ43ζ54 | -1 | linear of order 20 |
ρ15 | 1 | -1 | i | -i | ζ5 | ζ53 | ζ52 | ζ54 | -ζ53 | -ζ52 | -ζ5 | -ζ54 | 1 | ζ4ζ53 | ζ4ζ52 | ζ43ζ54 | ζ4ζ54 | ζ43ζ5 | ζ4ζ5 | ζ43ζ53 | ζ43ζ52 | -1 | linear of order 20 |
ρ16 | 1 | -1 | i | -i | ζ53 | ζ54 | ζ5 | ζ52 | -ζ54 | -ζ5 | -ζ53 | -ζ52 | 1 | ζ4ζ54 | ζ4ζ5 | ζ43ζ52 | ζ4ζ52 | ζ43ζ53 | ζ4ζ53 | ζ43ζ54 | ζ43ζ5 | -1 | linear of order 20 |
ρ17 | 1 | -1 | i | -i | ζ54 | ζ52 | ζ53 | ζ5 | -ζ52 | -ζ53 | -ζ54 | -ζ5 | 1 | ζ4ζ52 | ζ4ζ53 | ζ43ζ5 | ζ4ζ5 | ζ43ζ54 | ζ4ζ54 | ζ43ζ52 | ζ43ζ53 | -1 | linear of order 20 |
ρ18 | 1 | -1 | -i | i | ζ54 | ζ52 | ζ53 | ζ5 | -ζ52 | -ζ53 | -ζ54 | -ζ5 | 1 | ζ43ζ52 | ζ43ζ53 | ζ4ζ5 | ζ43ζ5 | ζ4ζ54 | ζ43ζ54 | ζ4ζ52 | ζ4ζ53 | -1 | linear of order 20 |
ρ19 | 1 | -1 | -i | i | ζ5 | ζ53 | ζ52 | ζ54 | -ζ53 | -ζ52 | -ζ5 | -ζ54 | 1 | ζ43ζ53 | ζ43ζ52 | ζ4ζ54 | ζ43ζ54 | ζ4ζ5 | ζ43ζ5 | ζ4ζ53 | ζ4ζ52 | -1 | linear of order 20 |
ρ20 | 1 | -1 | -i | i | ζ52 | ζ5 | ζ54 | ζ53 | -ζ5 | -ζ54 | -ζ52 | -ζ53 | 1 | ζ43ζ5 | ζ43ζ54 | ζ4ζ53 | ζ43ζ53 | ζ4ζ52 | ζ43ζ52 | ζ4ζ5 | ζ4ζ54 | -1 | linear of order 20 |
ρ21 | 10 | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | orthogonal lifted from F11 |
ρ22 | 10 | -10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | symplectic faithful, Schur index 2 |
(1 25 5 37 33 41 17 9 13 29 21)(2 6 34 18 14 22 26 38 42 10 30)(3 35 15 27 43 31 7 19 23 39 11)(4 16 44 8 24 12 36 28 32 20 40)
(1 2 3 4)(5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)
G:=sub<Sym(44)| (1,25,5,37,33,41,17,9,13,29,21)(2,6,34,18,14,22,26,38,42,10,30)(3,35,15,27,43,31,7,19,23,39,11)(4,16,44,8,24,12,36,28,32,20,40), (1,2,3,4)(5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)>;
G:=Group( (1,25,5,37,33,41,17,9,13,29,21)(2,6,34,18,14,22,26,38,42,10,30)(3,35,15,27,43,31,7,19,23,39,11)(4,16,44,8,24,12,36,28,32,20,40), (1,2,3,4)(5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44) );
G=PermutationGroup([[(1,25,5,37,33,41,17,9,13,29,21),(2,6,34,18,14,22,26,38,42,10,30),(3,35,15,27,43,31,7,19,23,39,11),(4,16,44,8,24,12,36,28,32,20,40)], [(1,2,3,4),(5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)]])
C11⋊C20 is a maximal subgroup of
C4.F11 C4×F11 C22⋊F11
C11⋊C20 is a maximal quotient of C11⋊C40
Matrix representation of C11⋊C20 ►in GL10(𝔽661)
660 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
660 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
660 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
660 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
660 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
660 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
660 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
660 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
660 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
660 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
259 | 222 | 0 | 259 | 0 | 402 | 402 | 0 | 259 | 0 |
259 | 402 | 259 | 481 | 0 | 0 | 402 | 402 | 0 | 0 |
259 | 0 | 259 | 0 | 259 | 222 | 402 | 0 | 0 | 402 |
0 | 402 | 259 | 259 | 259 | 402 | 0 | 222 | 0 | 0 |
259 | 402 | 0 | 0 | 259 | 0 | 0 | 402 | 259 | 222 |
481 | 402 | 259 | 0 | 0 | 402 | 0 | 0 | 259 | 402 |
0 | 0 | 481 | 0 | 259 | 402 | 402 | 402 | 259 | 0 |
259 | 0 | 0 | 259 | 481 | 402 | 0 | 402 | 0 | 402 |
0 | 0 | 259 | 259 | 0 | 0 | 222 | 402 | 259 | 402 |
0 | 402 | 0 | 259 | 259 | 0 | 402 | 0 | 481 | 402 |
G:=sub<GL(10,GF(661))| [660,660,660,660,660,660,660,660,660,660,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0],[259,259,259,0,259,481,0,259,0,0,222,402,0,402,402,402,0,0,0,402,0,259,259,259,0,259,481,0,259,0,259,481,0,259,0,0,0,259,259,259,0,0,259,259,259,0,259,481,0,259,402,0,222,402,0,402,402,402,0,0,402,402,402,0,0,0,402,0,222,402,0,402,0,222,402,0,402,402,402,0,259,0,0,0,259,259,259,0,259,481,0,0,402,0,222,402,0,402,402,402] >;
C11⋊C20 in GAP, Magma, Sage, TeX
C_{11}\rtimes C_{20}
% in TeX
G:=Group("C11:C20");
// GroupNames label
G:=SmallGroup(220,1);
// by ID
G=gap.SmallGroup(220,1);
# by ID
G:=PCGroup([4,-2,-5,-2,-11,40,3203,1447]);
// Polycyclic
G:=Group<a,b|a^11=b^20=1,b*a*b^-1=a^2>;
// generators/relations
Export
Subgroup lattice of C11⋊C20 in TeX
Character table of C11⋊C20 in TeX