direct product, metacyclic, supersoluble, monomial, A-group
Aliases: C4×F7, D7⋊C12, C28⋊2C6, D14.C6, Dic7⋊2C6, (C4×D7)⋊C3, C7⋊C12⋊2C2, C7⋊1(C2×C12), (C2×F7).C2, C2.1(C2×F7), C14.2(C2×C6), C7⋊C3⋊1(C2×C4), (C4×C7⋊C3)⋊2C2, (C2×C7⋊C3).2C22, SmallGroup(168,8)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C7 — C14 — C2×C7⋊C3 — C2×F7 — C4×F7 |
C7 — C4×F7 |
Generators and relations for C4×F7
G = < a,b,c | a4=b7=c6=1, ab=ba, ac=ca, cbc-1=b5 >
Character table of C4×F7
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 7 | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 14 | 28A | 28B | |
size | 1 | 1 | 7 | 7 | 7 | 7 | 1 | 1 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 6 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | linear of order 3 |
ρ6 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | 1 | 1 | -1 | -1 | ζ6 | ζ6 | ζ65 | ζ65 | ζ3 | ζ32 | 1 | ζ65 | ζ32 | ζ3 | ζ3 | ζ6 | ζ6 | ζ65 | ζ32 | 1 | 1 | 1 | linear of order 6 |
ρ7 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | 1 | 1 | -1 | -1 | ζ65 | ζ65 | ζ6 | ζ6 | ζ32 | ζ3 | 1 | ζ6 | ζ3 | ζ32 | ζ32 | ζ65 | ζ65 | ζ6 | ζ3 | 1 | 1 | 1 | linear of order 6 |
ρ8 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | -1 | -1 | -1 | -1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | 1 | ζ65 | ζ6 | ζ65 | ζ65 | ζ6 | ζ6 | ζ65 | ζ6 | 1 | -1 | -1 | linear of order 6 |
ρ9 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | -1 | -1 | 1 | 1 | ζ65 | ζ65 | ζ6 | ζ6 | ζ32 | ζ3 | 1 | ζ32 | ζ65 | ζ6 | ζ6 | ζ3 | ζ3 | ζ32 | ζ65 | 1 | -1 | -1 | linear of order 6 |
ρ10 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | -1 | -1 | 1 | 1 | ζ6 | ζ6 | ζ65 | ζ65 | ζ3 | ζ32 | 1 | ζ3 | ζ6 | ζ65 | ζ65 | ζ32 | ζ32 | ζ3 | ζ6 | 1 | -1 | -1 | linear of order 6 |
ρ11 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | linear of order 3 |
ρ12 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | -1 | -1 | -1 | -1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | 1 | ζ6 | ζ65 | ζ6 | ζ6 | ζ65 | ζ65 | ζ6 | ζ65 | 1 | -1 | -1 | linear of order 6 |
ρ13 | 1 | -1 | -1 | 1 | 1 | 1 | -i | i | -i | i | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -i | -i | i | -i | i | -i | i | i | -1 | -i | i | linear of order 4 |
ρ14 | 1 | -1 | 1 | -1 | 1 | 1 | -i | i | i | -i | 1 | -1 | -1 | 1 | -1 | -1 | 1 | i | -i | i | -i | -i | i | -i | i | -1 | -i | i | linear of order 4 |
ρ15 | 1 | -1 | -1 | 1 | 1 | 1 | i | -i | i | -i | -1 | 1 | 1 | -1 | -1 | -1 | 1 | i | i | -i | i | -i | i | -i | -i | -1 | i | -i | linear of order 4 |
ρ16 | 1 | -1 | 1 | -1 | 1 | 1 | i | -i | -i | i | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -i | i | -i | i | i | -i | i | -i | -1 | i | -i | linear of order 4 |
ρ17 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | -i | i | -i | i | ζ6 | ζ32 | ζ3 | ζ65 | ζ65 | ζ6 | 1 | ζ43ζ3 | ζ43ζ32 | ζ4ζ3 | ζ43ζ3 | ζ4ζ32 | ζ43ζ32 | ζ4ζ3 | ζ4ζ32 | -1 | -i | i | linear of order 12 |
ρ18 | 1 | -1 | 1 | -1 | ζ32 | ζ3 | -i | i | i | -i | ζ32 | ζ6 | ζ65 | ζ3 | ζ65 | ζ6 | 1 | ζ4ζ3 | ζ43ζ32 | ζ4ζ3 | ζ43ζ3 | ζ43ζ32 | ζ4ζ32 | ζ43ζ3 | ζ4ζ32 | -1 | -i | i | linear of order 12 |
ρ19 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | -i | i | -i | i | ζ65 | ζ3 | ζ32 | ζ6 | ζ6 | ζ65 | 1 | ζ43ζ32 | ζ43ζ3 | ζ4ζ32 | ζ43ζ32 | ζ4ζ3 | ζ43ζ3 | ζ4ζ32 | ζ4ζ3 | -1 | -i | i | linear of order 12 |
ρ20 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | i | -i | i | -i | ζ65 | ζ3 | ζ32 | ζ6 | ζ6 | ζ65 | 1 | ζ4ζ32 | ζ4ζ3 | ζ43ζ32 | ζ4ζ32 | ζ43ζ3 | ζ4ζ3 | ζ43ζ32 | ζ43ζ3 | -1 | i | -i | linear of order 12 |
ρ21 | 1 | -1 | 1 | -1 | ζ3 | ζ32 | i | -i | -i | i | ζ3 | ζ65 | ζ6 | ζ32 | ζ6 | ζ65 | 1 | ζ43ζ32 | ζ4ζ3 | ζ43ζ32 | ζ4ζ32 | ζ4ζ3 | ζ43ζ3 | ζ4ζ32 | ζ43ζ3 | -1 | i | -i | linear of order 12 |
ρ22 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | i | -i | i | -i | ζ6 | ζ32 | ζ3 | ζ65 | ζ65 | ζ6 | 1 | ζ4ζ3 | ζ4ζ32 | ζ43ζ3 | ζ4ζ3 | ζ43ζ32 | ζ4ζ32 | ζ43ζ3 | ζ43ζ32 | -1 | i | -i | linear of order 12 |
ρ23 | 1 | -1 | 1 | -1 | ζ3 | ζ32 | -i | i | i | -i | ζ3 | ζ65 | ζ6 | ζ32 | ζ6 | ζ65 | 1 | ζ4ζ32 | ζ43ζ3 | ζ4ζ32 | ζ43ζ32 | ζ43ζ3 | ζ4ζ3 | ζ43ζ32 | ζ4ζ3 | -1 | -i | i | linear of order 12 |
ρ24 | 1 | -1 | 1 | -1 | ζ32 | ζ3 | i | -i | -i | i | ζ32 | ζ6 | ζ65 | ζ3 | ζ65 | ζ6 | 1 | ζ43ζ3 | ζ4ζ32 | ζ43ζ3 | ζ4ζ3 | ζ4ζ32 | ζ43ζ32 | ζ4ζ3 | ζ43ζ32 | -1 | i | -i | linear of order 12 |
ρ25 | 6 | 6 | 0 | 0 | 0 | 0 | -6 | -6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | orthogonal lifted from C2×F7 |
ρ26 | 6 | 6 | 0 | 0 | 0 | 0 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | orthogonal lifted from F7 |
ρ27 | 6 | -6 | 0 | 0 | 0 | 0 | 6i | -6i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -i | i | complex faithful |
ρ28 | 6 | -6 | 0 | 0 | 0 | 0 | -6i | 6i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | i | -i | complex faithful |
(1 22 8 15)(2 23 9 16)(3 24 10 17)(4 25 11 18)(5 26 12 19)(6 27 13 20)(7 28 14 21)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(2 4 3 7 5 6)(9 11 10 14 12 13)(16 18 17 21 19 20)(23 25 24 28 26 27)
G:=sub<Sym(28)| (1,22,8,15)(2,23,9,16)(3,24,10,17)(4,25,11,18)(5,26,12,19)(6,27,13,20)(7,28,14,21), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (2,4,3,7,5,6)(9,11,10,14,12,13)(16,18,17,21,19,20)(23,25,24,28,26,27)>;
G:=Group( (1,22,8,15)(2,23,9,16)(3,24,10,17)(4,25,11,18)(5,26,12,19)(6,27,13,20)(7,28,14,21), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (2,4,3,7,5,6)(9,11,10,14,12,13)(16,18,17,21,19,20)(23,25,24,28,26,27) );
G=PermutationGroup([[(1,22,8,15),(2,23,9,16),(3,24,10,17),(4,25,11,18),(5,26,12,19),(6,27,13,20),(7,28,14,21)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(2,4,3,7,5,6),(9,11,10,14,12,13),(16,18,17,21,19,20),(23,25,24,28,26,27)]])
G:=TransitiveGroup(28,26);
C4×F7 is a maximal subgroup of
C8⋊F7 D28⋊6C6 D4⋊2F7 Q8⋊3F7
C4×F7 is a maximal quotient of C8⋊F7 Dic7⋊C12 D14⋊C12
Matrix representation of C4×F7 ►in GL6(𝔽337)
189 | 0 | 0 | 0 | 0 | 0 |
0 | 189 | 0 | 0 | 0 | 0 |
0 | 0 | 189 | 0 | 0 | 0 |
0 | 0 | 0 | 189 | 0 | 0 |
0 | 0 | 0 | 0 | 189 | 0 |
0 | 0 | 0 | 0 | 0 | 189 |
336 | 336 | 336 | 336 | 336 | 336 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
336 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 336 |
0 | 0 | 0 | 336 | 0 | 0 |
0 | 336 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 | 1 | 1 |
0 | 0 | 0 | 0 | 336 | 0 |
G:=sub<GL(6,GF(337))| [189,0,0,0,0,0,0,189,0,0,0,0,0,0,189,0,0,0,0,0,0,189,0,0,0,0,0,0,189,0,0,0,0,0,0,189],[336,1,0,0,0,0,336,0,1,0,0,0,336,0,0,1,0,0,336,0,0,0,1,0,336,0,0,0,0,1,336,0,0,0,0,0],[336,0,0,0,1,0,0,0,0,336,1,0,0,0,0,0,1,0,0,0,336,0,1,0,0,0,0,0,1,336,0,336,0,0,1,0] >;
C4×F7 in GAP, Magma, Sage, TeX
C_4\times F_7
% in TeX
G:=Group("C4xF7");
// GroupNames label
G:=SmallGroup(168,8);
// by ID
G=gap.SmallGroup(168,8);
# by ID
G:=PCGroup([5,-2,-2,-3,-2,-7,66,3604,614]);
// Polycyclic
G:=Group<a,b,c|a^4=b^7=c^6=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^5>;
// generators/relations
Export
Subgroup lattice of C4×F7 in TeX
Character table of C4×F7 in TeX