Copied to
clipboard

G = C7⋊He3⋊C2order 378 = 2·33·7

3rd semidirect product of C7⋊He3 and C2 acting faithfully

metabelian, supersoluble, monomial

Aliases: C7⋊He33C2, (C3×C21)⋊9C6, C21.9(C3×S3), C72(C32⋊C6), C3⋊S3⋊(C7⋊C3), C32⋊(C2×C7⋊C3), (C3×C7⋊C3)⋊2S3, C3.4(S3×C7⋊C3), (C7×C3⋊S3)⋊2C3, SmallGroup(378,17)

Series: Derived Chief Lower central Upper central

C1C3×C21 — C7⋊He3⋊C2
C1C7C21C3×C21C7⋊He3 — C7⋊He3⋊C2
C3×C21 — C7⋊He3⋊C2
C1

Generators and relations for C7⋊He3⋊C2
 G = < a,b,c,d,e | a7=b3=c3=d3=e2=1, ab=ba, ac=ca, dad-1=a4, ae=ea, bc=cb, dbd-1=bc-1, ebe=b-1, cd=dc, ece=c-1, de=ed >

9C2
3C3
21C3
42C3
3S3
9S3
63C6
7C32
14C32
9C14
3C7⋊C3
3C21
6C7⋊C3
21C3×S3
7He3
3S3×C7
9C2×C7⋊C3
9S3×C7
2C3×C7⋊C3
7C32⋊C6
3S3×C7⋊C3

Character table of C7⋊He3⋊C2

 class 123A3B3C3D3E3F6A6B7A7B14A14B21A21B21C21D21E21F21G21H
 size 192621214242636333272766666666
ρ11111111111111111111111    trivial
ρ21-1111111-1-111-1-111111111    linear of order 2
ρ31-111ζ3ζ32ζ3ζ32ζ65ζ611-1-111111111    linear of order 6
ρ41-111ζ32ζ3ζ32ζ3ζ6ζ6511-1-111111111    linear of order 6
ρ51111ζ32ζ3ζ32ζ3ζ32ζ3111111111111    linear of order 3
ρ61111ζ3ζ32ζ3ζ32ζ3ζ32111111111111    linear of order 3
ρ7202-122-1-1002200-12-1-1-12-1-1    orthogonal lifted from S3
ρ8202-1-1+-3-1--3ζ65ζ6002200-12-1-1-12-1-1    complex lifted from C3×S3
ρ9202-1-1--3-1+-3ζ6ζ65002200-12-1-1-12-1-1    complex lifted from C3×S3
ρ103333000000-1--7/2-1+-7/2-1+-7/2-1--7/2-1--7/2-1+-7/2-1+-7/2-1--7/2-1+-7/2-1--7/2-1--7/2-1+-7/2    complex lifted from C7⋊C3
ρ113333000000-1+-7/2-1--7/2-1--7/2-1+-7/2-1+-7/2-1--7/2-1--7/2-1+-7/2-1--7/2-1+-7/2-1+-7/2-1--7/2    complex lifted from C7⋊C3
ρ123-333000000-1+-7/2-1--7/21+-7/21--7/2-1+-7/2-1--7/2-1--7/2-1+-7/2-1--7/2-1+-7/2-1+-7/2-1--7/2    complex lifted from C2×C7⋊C3
ρ133-333000000-1--7/2-1+-7/21--7/21+-7/2-1--7/2-1+-7/2-1+-7/2-1--7/2-1+-7/2-1--7/2-1--7/2-1+-7/2    complex lifted from C2×C7⋊C3
ρ1460-3000000066000-3000-300    orthogonal lifted from C32⋊C6
ρ1560-30000000-1+-7-1--70074+2ζ7271+-7/27675+2ζ73747277675731--7/27472+2ζ776+2ζ7573    complex faithful
ρ1660-30000000-1--7-1+-7007675+2ζ731--7/27472+2ζ776757374+2ζ7271+-7/276+2ζ757374727    complex faithful
ρ1760-30000000-1--7-1+-7007675731--7/274+2ζ72776+2ζ7573747271+-7/27675+2ζ737472+2ζ7    complex faithful
ρ1860-30000000-1+-7-1--700747271+-7/27675737472+2ζ776+2ζ75731--7/274+2ζ7277675+2ζ73    complex faithful
ρ19606-3000000-1+-7-1--7001--7/2-1--71+-7/21--7/21+-7/2-1+-71--7/21+-7/2    complex lifted from S3×C7⋊C3
ρ2060-30000000-1+-7-1--7007472+2ζ71+-7/276+2ζ757374+2ζ7277675+2ζ731--7/274727767573    complex faithful
ρ21606-3000000-1--7-1+-7001+-7/2-1+-71--7/21+-7/21--7/2-1--71+-7/21--7/2    complex lifted from S3×C7⋊C3
ρ2260-30000000-1--7-1+-70076+2ζ75731--7/2747277675+2ζ737472+2ζ71+-7/276757374+2ζ727    complex faithful

Smallest permutation representation of C7⋊He3⋊C2
On 63 points
Generators in S63
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)
(1 43 22)(2 44 23)(3 45 24)(4 46 25)(5 47 26)(6 48 27)(7 49 28)(8 50 29)(9 51 30)(10 52 31)(11 53 32)(12 54 33)(13 55 34)(14 56 35)(15 57 36)(16 58 37)(17 59 38)(18 60 39)(19 61 40)(20 62 41)(21 63 42)
(1 15 8)(2 16 9)(3 17 10)(4 18 11)(5 19 12)(6 20 13)(7 21 14)(22 36 29)(23 37 30)(24 38 31)(25 39 32)(26 40 33)(27 41 34)(28 42 35)(43 57 50)(44 58 51)(45 59 52)(46 60 53)(47 61 54)(48 62 55)(49 63 56)
(2 3 5)(4 7 6)(9 10 12)(11 14 13)(16 17 19)(18 21 20)(22 29 36)(23 31 40)(24 33 37)(25 35 41)(26 30 38)(27 32 42)(28 34 39)(43 57 50)(44 59 54)(45 61 51)(46 63 55)(47 58 52)(48 60 56)(49 62 53)
(8 15)(9 16)(10 17)(11 18)(12 19)(13 20)(14 21)(22 43)(23 44)(24 45)(25 46)(26 47)(27 48)(28 49)(29 57)(30 58)(31 59)(32 60)(33 61)(34 62)(35 63)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)

G:=sub<Sym(63)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63), (1,43,22)(2,44,23)(3,45,24)(4,46,25)(5,47,26)(6,48,27)(7,49,28)(8,50,29)(9,51,30)(10,52,31)(11,53,32)(12,54,33)(13,55,34)(14,56,35)(15,57,36)(16,58,37)(17,59,38)(18,60,39)(19,61,40)(20,62,41)(21,63,42), (1,15,8)(2,16,9)(3,17,10)(4,18,11)(5,19,12)(6,20,13)(7,21,14)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(22,29,36)(23,31,40)(24,33,37)(25,35,41)(26,30,38)(27,32,42)(28,34,39)(43,57,50)(44,59,54)(45,61,51)(46,63,55)(47,58,52)(48,60,56)(49,62,53), (8,15)(9,16)(10,17)(11,18)(12,19)(13,20)(14,21)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,57)(30,58)(31,59)(32,60)(33,61)(34,62)(35,63)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63), (1,43,22)(2,44,23)(3,45,24)(4,46,25)(5,47,26)(6,48,27)(7,49,28)(8,50,29)(9,51,30)(10,52,31)(11,53,32)(12,54,33)(13,55,34)(14,56,35)(15,57,36)(16,58,37)(17,59,38)(18,60,39)(19,61,40)(20,62,41)(21,63,42), (1,15,8)(2,16,9)(3,17,10)(4,18,11)(5,19,12)(6,20,13)(7,21,14)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(22,29,36)(23,31,40)(24,33,37)(25,35,41)(26,30,38)(27,32,42)(28,34,39)(43,57,50)(44,59,54)(45,61,51)(46,63,55)(47,58,52)(48,60,56)(49,62,53), (8,15)(9,16)(10,17)(11,18)(12,19)(13,20)(14,21)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,57)(30,58)(31,59)(32,60)(33,61)(34,62)(35,63)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63)], [(1,43,22),(2,44,23),(3,45,24),(4,46,25),(5,47,26),(6,48,27),(7,49,28),(8,50,29),(9,51,30),(10,52,31),(11,53,32),(12,54,33),(13,55,34),(14,56,35),(15,57,36),(16,58,37),(17,59,38),(18,60,39),(19,61,40),(20,62,41),(21,63,42)], [(1,15,8),(2,16,9),(3,17,10),(4,18,11),(5,19,12),(6,20,13),(7,21,14),(22,36,29),(23,37,30),(24,38,31),(25,39,32),(26,40,33),(27,41,34),(28,42,35),(43,57,50),(44,58,51),(45,59,52),(46,60,53),(47,61,54),(48,62,55),(49,63,56)], [(2,3,5),(4,7,6),(9,10,12),(11,14,13),(16,17,19),(18,21,20),(22,29,36),(23,31,40),(24,33,37),(25,35,41),(26,30,38),(27,32,42),(28,34,39),(43,57,50),(44,59,54),(45,61,51),(46,63,55),(47,58,52),(48,60,56),(49,62,53)], [(8,15),(9,16),(10,17),(11,18),(12,19),(13,20),(14,21),(22,43),(23,44),(24,45),(25,46),(26,47),(27,48),(28,49),(29,57),(30,58),(31,59),(32,60),(33,61),(34,62),(35,63),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56)]])

Matrix representation of C7⋊He3⋊C2 in GL6(𝔽43)

18191000
100000
010000
00018191
000100
000010
,
301535333520
35238201742
383911423836
10823402315
23261152839
15739118
,
000100
000010
000001
42004200
04200420
00420042
,
100000
244242000
010000
000100
000244242
000010
,
100000
010000
001000
42004200
04200420
00420042

G:=sub<GL(6,GF(43))| [18,1,0,0,0,0,19,0,1,0,0,0,1,0,0,0,0,0,0,0,0,18,1,0,0,0,0,19,0,1,0,0,0,1,0,0],[30,35,38,10,23,1,15,2,39,8,26,5,35,38,11,23,1,7,33,20,42,40,15,39,35,17,38,23,28,1,20,42,36,15,39,18],[0,0,0,42,0,0,0,0,0,0,42,0,0,0,0,0,0,42,1,0,0,42,0,0,0,1,0,0,42,0,0,0,1,0,0,42],[1,24,0,0,0,0,0,42,1,0,0,0,0,42,0,0,0,0,0,0,0,1,24,0,0,0,0,0,42,1,0,0,0,0,42,0],[1,0,0,42,0,0,0,1,0,0,42,0,0,0,1,0,0,42,0,0,0,42,0,0,0,0,0,0,42,0,0,0,0,0,0,42] >;

C7⋊He3⋊C2 in GAP, Magma, Sage, TeX

C_7\rtimes {\rm He}_3\rtimes C_2
% in TeX

G:=Group("C7:He3:C2");
// GroupNames label

G:=SmallGroup(378,17);
// by ID

G=gap.SmallGroup(378,17);
# by ID

G:=PCGroup([5,-2,-3,-3,-3,-7,182,187,723,1359]);
// Polycyclic

G:=Group<a,b,c,d,e|a^7=b^3=c^3=d^3=e^2=1,a*b=b*a,a*c=c*a,d*a*d^-1=a^4,a*e=e*a,b*c=c*b,d*b*d^-1=b*c^-1,e*b*e=b^-1,c*d=d*c,e*c*e=c^-1,d*e=e*d>;
// generators/relations

Export

Subgroup lattice of C7⋊He3⋊C2 in TeX
Character table of C7⋊He3⋊C2 in TeX

׿
×
𝔽