Thermostats

  1. Conjugate Pairing in the three dimensional periodic Lorentz gas C. P. Dettmann, G. P. Morriss and L. Rondoni, Phys. Rev. E 52, R5746-R5748 (1995) pdf
  2. Proof of Lyapunov exponent pairing for systems at constant kinetic energy. C. P. Dettmann and G. P. Morriss, Phys. Rev. E, 53, R5545-R5548 (1996) pdf ps["Dettmann-Morriss theorem"]
  3. Hamiltonian formulation of the Gaussian isokinetic thermostat. C. P. Dettmann and G. P. Morriss, Phys. Rev. E, 54, 2495-2500 (1996) pdf ps
  4. The field dependence of Lyapunov exponents for nonequilibrium systems G. P. Morriss, C. P. Dettmann and D. J. Isbister, Phys. Rev. E, 54 4748-4654 (1996) pdf
  5. Crisis in the periodic Lorentz gas. C. P. Dettmann and G. P. Morriss, Phys. Rev. E 54, 4782-4790 (1996) pdf (4.9M)
  6. Hamiltonian reformulation and pairing of Lyapunov exponents for Nose-Hoover dynamics C. P. Dettmann and G. P. Morriss, Phys. Rev. E, 55, 3693-3696 (1997) pdf ps arxiv [Origin of the "Nose-Poincare" symplectic integrator]
  7. Stability ordering of cycle expansions C. P. Dettmann and G. P. Morriss, Phys. Rev. Lett. 78, 4201-4204 (1997) pdf ps arxiv
  8. Irreversibility, diffusion and multifractal measures in thermostatted systems, C. P. Dettmann, G. P. Morriss, and L. Rondoni, Chaos, Solitons and Fractals 8, 783-792 (1997)
  9. Recent results for the thermostatted Lorentz gas, G. P. Morriss, C. P. Dettmann and L. Rondoni, Physica A 240, 84-95 (1997)
  10. Thermostats: Analysis and application G. P. Morriss and C. P. Dettmann, Chaos 8,321-336 (1998) ps pdf
  11. Hamiltonian for a restricted isoenergetic thermostat C. P. Dettmann, Phys. Rev. E 60,7576-7577 (1999) pdf ps arxiv
  12. Thermostats for "slow" configurational modes A. A. Samoletov, C. P. Dettmann and M. A. J. Chaplain, J. Stat. Phys. 128 1321-1336 (2007) [Origin of the "Nose-Hoover-Langevin" thermostat] pdf arxiv
  13. Notes on configurational thermostat schemes, A. A. Samoletov, C. P. Dettmann and M. A. J. Chaplain, J. Chem. Phys. 132 246101 (2010) pdf arxiv
  14. Book chapter: The Lorentz gas as a paradigm for nonequilibrium stationary states, C. P. Dettmann, pp 315-365 in Hard ball systems and the Lorentz gas (edited by D. Szasz), Encyclopaedia of Mathematical Sciences Vol 101 (Springer, 2000). Full size version, 50 pages pdf. Environmental microscopic version, 25 pages pdf.
  15. Book review: Time reversibility, computer simulation and chaos, W. G. Hoover, (World Scientific, River Edge NJ, 1999); review published in Amer. J. Phys. 70 558-558 (2002) html

These publications are copyright. For allowed usage, please check the publisher's website by clicking on the journal name.

Return to Publications page; Home page.