metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D21, C7⋊S3, C3⋊D7, C21⋊1C2, sometimes denoted D42 or Dih21 or Dih42, SmallGroup(42,5)
Series: Derived ►Chief ►Lower central ►Upper central
C21 — D21 |
Generators and relations for D21
G = < a,b | a21=b2=1, bab=a-1 >
Character table of D21
class | 1 | 2 | 3 | 7A | 7B | 7C | 21A | 21B | 21C | 21D | 21E | 21F | |
size | 1 | 21 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 2 | 0 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ4 | 2 | 0 | 2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ75+ζ72 | orthogonal lifted from D7 |
ρ5 | 2 | 0 | 2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ76+ζ7 | orthogonal lifted from D7 |
ρ6 | 2 | 0 | 2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ74+ζ73 | orthogonal lifted from D7 |
ρ7 | 2 | 0 | -1 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ3ζ75-ζ3ζ72-ζ72 | -ζ32ζ74+ζ32ζ73-ζ74 | ζ32ζ74-ζ32ζ73-ζ73 | ζ32ζ75-ζ32ζ72-ζ72 | -ζ3ζ76+ζ3ζ7-ζ76 | ζ3ζ76-ζ3ζ7-ζ7 | orthogonal faithful |
ρ8 | 2 | 0 | -1 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | -ζ3ζ76+ζ3ζ7-ζ76 | ζ3ζ75-ζ3ζ72-ζ72 | ζ32ζ75-ζ32ζ72-ζ72 | ζ3ζ76-ζ3ζ7-ζ7 | ζ32ζ74-ζ32ζ73-ζ73 | -ζ32ζ74+ζ32ζ73-ζ74 | orthogonal faithful |
ρ9 | 2 | 0 | -1 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ32ζ74-ζ32ζ73-ζ73 | -ζ3ζ76+ζ3ζ7-ζ76 | ζ3ζ76-ζ3ζ7-ζ7 | -ζ32ζ74+ζ32ζ73-ζ74 | ζ32ζ75-ζ32ζ72-ζ72 | ζ3ζ75-ζ3ζ72-ζ72 | orthogonal faithful |
ρ10 | 2 | 0 | -1 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ3ζ76-ζ3ζ7-ζ7 | ζ32ζ75-ζ32ζ72-ζ72 | ζ3ζ75-ζ3ζ72-ζ72 | -ζ3ζ76+ζ3ζ7-ζ76 | -ζ32ζ74+ζ32ζ73-ζ74 | ζ32ζ74-ζ32ζ73-ζ73 | orthogonal faithful |
ρ11 | 2 | 0 | -1 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ32ζ75-ζ32ζ72-ζ72 | ζ32ζ74-ζ32ζ73-ζ73 | -ζ32ζ74+ζ32ζ73-ζ74 | ζ3ζ75-ζ3ζ72-ζ72 | ζ3ζ76-ζ3ζ7-ζ7 | -ζ3ζ76+ζ3ζ7-ζ76 | orthogonal faithful |
ρ12 | 2 | 0 | -1 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | -ζ32ζ74+ζ32ζ73-ζ74 | ζ3ζ76-ζ3ζ7-ζ7 | -ζ3ζ76+ζ3ζ7-ζ76 | ζ32ζ74-ζ32ζ73-ζ73 | ζ3ζ75-ζ3ζ72-ζ72 | ζ32ζ75-ζ32ζ72-ζ72 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)
(1 21)(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 12)
G:=sub<Sym(21)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)], [(1,21),(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,12)]])
G:=TransitiveGroup(21,5);
D21 is a maximal subgroup of
S3×D7 D63 C3⋊F7 C3⋊D21 C7⋊S4 D105 D147 C7⋊D21 D231
D21 is a maximal quotient of
Dic21 D63 C3⋊D21 C7⋊S4 D105 D147 C7⋊D21 D231
Matrix representation of D21 ►in GL2(𝔽41) generated by
40 | 20 |
21 | 30 |
30 | 35 |
20 | 11 |
G:=sub<GL(2,GF(41))| [40,21,20,30],[30,20,35,11] >;
D21 in GAP, Magma, Sage, TeX
D_{21}
% in TeX
G:=Group("D21");
// GroupNames label
G:=SmallGroup(42,5);
// by ID
G=gap.SmallGroup(42,5);
# by ID
G:=PCGroup([3,-2,-3,-7,25,326]);
// Polycyclic
G:=Group<a,b|a^21=b^2=1,b*a*b=a^-1>;
// generators/relations
Export
Subgroup lattice of D21 in TeX
Character table of D21 in TeX