metacyclic, supersoluble, monomial, Z-group, 3-hyperelementary
Aliases: C7⋊C9, C21.C3, C3.(C7⋊C3), SmallGroup(63,1)
Series: Derived ►Chief ►Lower central ►Upper central
C7 — C7⋊C9 |
Generators and relations for C7⋊C9
G = < a,b | a7=b9=1, bab-1=a4 >
Character table of C7⋊C9
class | 1 | 3A | 3B | 7A | 7B | 9A | 9B | 9C | 9D | 9E | 9F | 21A | 21B | 21C | 21D | |
size | 1 | 1 | 1 | 3 | 3 | 7 | 7 | 7 | 7 | 7 | 7 | 3 | 3 | 3 | 3 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ3 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ4 | 1 | ζ3 | ζ32 | 1 | 1 | ζ92 | ζ9 | ζ94 | ζ95 | ζ98 | ζ97 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 9 |
ρ5 | 1 | ζ3 | ζ32 | 1 | 1 | ζ98 | ζ94 | ζ97 | ζ92 | ζ95 | ζ9 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 9 |
ρ6 | 1 | ζ32 | ζ3 | 1 | 1 | ζ94 | ζ92 | ζ98 | ζ9 | ζ97 | ζ95 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 9 |
ρ7 | 1 | ζ3 | ζ32 | 1 | 1 | ζ95 | ζ97 | ζ9 | ζ98 | ζ92 | ζ94 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 9 |
ρ8 | 1 | ζ32 | ζ3 | 1 | 1 | ζ97 | ζ98 | ζ95 | ζ94 | ζ9 | ζ92 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 9 |
ρ9 | 1 | ζ32 | ζ3 | 1 | 1 | ζ9 | ζ95 | ζ92 | ζ97 | ζ94 | ζ98 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 9 |
ρ10 | 3 | 3 | 3 | -1+√-7/2 | -1-√-7/2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-7/2 | -1-√-7/2 | -1-√-7/2 | -1+√-7/2 | complex lifted from C7⋊C3 |
ρ11 | 3 | 3 | 3 | -1-√-7/2 | -1+√-7/2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-7/2 | -1+√-7/2 | -1+√-7/2 | -1-√-7/2 | complex lifted from C7⋊C3 |
ρ12 | 3 | -3-3√-3/2 | -3+3√-3/2 | -1-√-7/2 | -1+√-7/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3ζ76+ζ3ζ75+ζ3ζ73 | ζ3ζ74+ζ3ζ72+ζ3ζ7 | ζ32ζ74+ζ32ζ72+ζ32ζ7 | ζ32ζ76+ζ32ζ75+ζ32ζ73 | complex faithful, Schur index 3 |
ρ13 | 3 | -3+3√-3/2 | -3-3√-3/2 | -1-√-7/2 | -1+√-7/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ32ζ76+ζ32ζ75+ζ32ζ73 | ζ32ζ74+ζ32ζ72+ζ32ζ7 | ζ3ζ74+ζ3ζ72+ζ3ζ7 | ζ3ζ76+ζ3ζ75+ζ3ζ73 | complex faithful, Schur index 3 |
ρ14 | 3 | -3-3√-3/2 | -3+3√-3/2 | -1+√-7/2 | -1-√-7/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3ζ74+ζ3ζ72+ζ3ζ7 | ζ3ζ76+ζ3ζ75+ζ3ζ73 | ζ32ζ76+ζ32ζ75+ζ32ζ73 | ζ32ζ74+ζ32ζ72+ζ32ζ7 | complex faithful, Schur index 3 |
ρ15 | 3 | -3+3√-3/2 | -3-3√-3/2 | -1+√-7/2 | -1-√-7/2 | 0 | 0 | 0 | 0 | 0 | 0 | ζ32ζ74+ζ32ζ72+ζ32ζ7 | ζ32ζ76+ζ32ζ75+ζ32ζ73 | ζ3ζ76+ζ3ζ75+ζ3ζ73 | ζ3ζ74+ζ3ζ72+ζ3ζ7 | complex faithful, Schur index 3 |
(1 56 51 34 42 17 19)(2 43 57 18 52 20 35)(3 53 44 21 58 36 10)(4 59 54 28 45 11 22)(5 37 60 12 46 23 29)(6 47 38 24 61 30 13)(7 62 48 31 39 14 25)(8 40 63 15 49 26 32)(9 50 41 27 55 33 16)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)
G:=sub<Sym(63)| (1,56,51,34,42,17,19)(2,43,57,18,52,20,35)(3,53,44,21,58,36,10)(4,59,54,28,45,11,22)(5,37,60,12,46,23,29)(6,47,38,24,61,30,13)(7,62,48,31,39,14,25)(8,40,63,15,49,26,32)(9,50,41,27,55,33,16), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)>;
G:=Group( (1,56,51,34,42,17,19)(2,43,57,18,52,20,35)(3,53,44,21,58,36,10)(4,59,54,28,45,11,22)(5,37,60,12,46,23,29)(6,47,38,24,61,30,13)(7,62,48,31,39,14,25)(8,40,63,15,49,26,32)(9,50,41,27,55,33,16), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63) );
G=PermutationGroup([[(1,56,51,34,42,17,19),(2,43,57,18,52,20,35),(3,53,44,21,58,36,10),(4,59,54,28,45,11,22),(5,37,60,12,46,23,29),(6,47,38,24,61,30,13),(7,62,48,31,39,14,25),(8,40,63,15,49,26,32),(9,50,41,27,55,33,16)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63)]])
C7⋊C9 is a maximal subgroup of
C7⋊C18 C9×C7⋊C3 C63⋊C3 C63⋊3C3 C21.C32 C21.A4 C49⋊C9 C72⋊C9 C72⋊3C9
C7⋊C9 is a maximal quotient of
C7⋊C27 C21.A4 C49⋊C9 C72⋊C9 C72⋊3C9
Matrix representation of C7⋊C9 ►in GL3(𝔽127) generated by
0 | 1 | 0 |
0 | 0 | 1 |
1 | 23 | 22 |
49 | 2 | 53 |
111 | 53 | 85 |
53 | 125 | 25 |
G:=sub<GL(3,GF(127))| [0,0,1,1,0,23,0,1,22],[49,111,53,2,53,125,53,85,25] >;
C7⋊C9 in GAP, Magma, Sage, TeX
C_7\rtimes C_9
% in TeX
G:=Group("C7:C9");
// GroupNames label
G:=SmallGroup(63,1);
// by ID
G=gap.SmallGroup(63,1);
# by ID
G:=PCGroup([3,-3,-3,-7,9,164]);
// Polycyclic
G:=Group<a,b|a^7=b^9=1,b*a*b^-1=a^4>;
// generators/relations
Export
Subgroup lattice of C7⋊C9 in TeX
Character table of C7⋊C9 in TeX