Copied to
clipboard

G = C7⋊D4order 56 = 23·7

The semidirect product of C7 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C72D4, C22⋊D7, Dic7⋊C2, D142C2, C2.5D14, C14.5C22, (C2×C14)⋊2C2, SmallGroup(56,7)

Series: Derived Chief Lower central Upper central

C1C14 — C7⋊D4
C1C7C14D14 — C7⋊D4
C7C14 — C7⋊D4
C1C2C22

Generators and relations for C7⋊D4
 G = < a,b,c | a7=b4=c2=1, bab-1=cac=a-1, cbc=b-1 >

2C2
14C2
7C4
7C22
2D7
2C14
7D4

Character table of C7⋊D4

 class 12A2B2C47A7B7C14A14B14C14D14E14F14G14H14I
 size 1121414222222222222
ρ111111111111111111    trivial
ρ211-11-11111-1-1-1-1-1-111    linear of order 2
ρ311-1-111111-1-1-1-1-1-111    linear of order 2
ρ4111-1-1111111111111    linear of order 2
ρ52-2000222-2000000-2-2    orthogonal lifted from D4
ρ622200ζ7473ζ767ζ7572ζ767ζ767ζ7572ζ7473ζ7473ζ7572ζ767ζ7572ζ7473    orthogonal lifted from D7
ρ722200ζ767ζ7572ζ7473ζ7572ζ7572ζ7473ζ767ζ767ζ7473ζ7572ζ7473ζ767    orthogonal lifted from D7
ρ822200ζ7572ζ7473ζ767ζ7473ζ7473ζ767ζ7572ζ7572ζ767ζ7473ζ767ζ7572    orthogonal lifted from D7
ρ922-200ζ7572ζ7473ζ767ζ74737473767757275727677473ζ767ζ7572    orthogonal lifted from D14
ρ1022-200ζ767ζ7572ζ7473ζ75727572747376776774737572ζ7473ζ767    orthogonal lifted from D14
ρ1122-200ζ7473ζ767ζ7572ζ7677677572747374737572767ζ7572ζ7473    orthogonal lifted from D14
ρ122-2000ζ7473ζ767ζ757276776775727473ζ7473ζ7572ζ76775727473    complex faithful
ρ132-2000ζ767ζ7572ζ74737572ζ75727473767ζ767ζ747375727473767    complex faithful
ρ142-2000ζ7572ζ7473ζ7677473ζ7473767ζ75727572ζ76774737677572    complex faithful
ρ152-2000ζ7473ζ767ζ7572767ζ767ζ7572ζ74737473757276775727473    complex faithful
ρ162-2000ζ767ζ7572ζ747375727572ζ7473ζ7677677473ζ75727473767    complex faithful
ρ172-2000ζ7572ζ7473ζ76774737473ζ7677572ζ7572767ζ74737677572    complex faithful

Permutation representations of C7⋊D4
On 28 points - transitive group 28T6
Generators in S28
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(1 22 13 15)(2 28 14 21)(3 27 8 20)(4 26 9 19)(5 25 10 18)(6 24 11 17)(7 23 12 16)
(1 15)(2 21)(3 20)(4 19)(5 18)(6 17)(7 16)(8 27)(9 26)(10 25)(11 24)(12 23)(13 22)(14 28)

G:=sub<Sym(28)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,22,13,15)(2,28,14,21)(3,27,8,20)(4,26,9,19)(5,25,10,18)(6,24,11,17)(7,23,12,16), (1,15)(2,21)(3,20)(4,19)(5,18)(6,17)(7,16)(8,27)(9,26)(10,25)(11,24)(12,23)(13,22)(14,28)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,22,13,15)(2,28,14,21)(3,27,8,20)(4,26,9,19)(5,25,10,18)(6,24,11,17)(7,23,12,16), (1,15)(2,21)(3,20)(4,19)(5,18)(6,17)(7,16)(8,27)(9,26)(10,25)(11,24)(12,23)(13,22)(14,28) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(1,22,13,15),(2,28,14,21),(3,27,8,20),(4,26,9,19),(5,25,10,18),(6,24,11,17),(7,23,12,16)], [(1,15),(2,21),(3,20),(4,19),(5,18),(6,17),(7,16),(8,27),(9,26),(10,25),(11,24),(12,23),(13,22),(14,28)]])

G:=TransitiveGroup(28,6);

On 28 points - transitive group 28T7
Generators in S28
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(1 20 13 27)(2 19 14 26)(3 18 8 25)(4 17 9 24)(5 16 10 23)(6 15 11 22)(7 21 12 28)
(2 7)(3 6)(4 5)(8 11)(9 10)(12 14)(15 25)(16 24)(17 23)(18 22)(19 28)(20 27)(21 26)

G:=sub<Sym(28)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,20,13,27)(2,19,14,26)(3,18,8,25)(4,17,9,24)(5,16,10,23)(6,15,11,22)(7,21,12,28), (2,7)(3,6)(4,5)(8,11)(9,10)(12,14)(15,25)(16,24)(17,23)(18,22)(19,28)(20,27)(21,26)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,20,13,27)(2,19,14,26)(3,18,8,25)(4,17,9,24)(5,16,10,23)(6,15,11,22)(7,21,12,28), (2,7)(3,6)(4,5)(8,11)(9,10)(12,14)(15,25)(16,24)(17,23)(18,22)(19,28)(20,27)(21,26) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(1,20,13,27),(2,19,14,26),(3,18,8,25),(4,17,9,24),(5,16,10,23),(6,15,11,22),(7,21,12,28)], [(2,7),(3,6),(4,5),(8,11),(9,10),(12,14),(15,25),(16,24),(17,23),(18,22),(19,28),(20,27),(21,26)]])

G:=TransitiveGroup(28,7);

C7⋊D4 is a maximal subgroup of
C4○D28  D4×D7  D42D7  Dic7⋊C6  C21⋊D4  C7⋊D12  C217D4  C7⋊S4  C35⋊D4  C7⋊D20  C357D4  C49⋊D4  C722D4  C7⋊D28  C727D4
C7⋊D4 is a maximal quotient of
Dic7⋊C4  D14⋊C4  D4⋊D7  D4.D7  Q8⋊D7  C7⋊Q16  C23.D7  C21⋊D4  C7⋊D12  C217D4  C35⋊D4  C7⋊D20  C357D4  C49⋊D4  C722D4  C7⋊D28  C727D4

Matrix representation of C7⋊D4 in GL2(𝔽29) generated by

71
280
,
919
1420
,
17
028
G:=sub<GL(2,GF(29))| [7,28,1,0],[9,14,19,20],[1,0,7,28] >;

C7⋊D4 in GAP, Magma, Sage, TeX

C_7\rtimes D_4
% in TeX

G:=Group("C7:D4");
// GroupNames label

G:=SmallGroup(56,7);
// by ID

G=gap.SmallGroup(56,7);
# by ID

G:=PCGroup([4,-2,-2,-2,-7,49,771]);
// Polycyclic

G:=Group<a,b,c|a^7=b^4=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C7⋊D4 in TeX
Character table of C7⋊D4 in TeX

׿
×
𝔽