metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C7⋊2D4, C22⋊D7, Dic7⋊C2, D14⋊2C2, C2.5D14, C14.5C22, (C2×C14)⋊2C2, SmallGroup(56,7)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C7⋊D4
G = < a,b,c | a7=b4=c2=1, bab-1=cac=a-1, cbc=b-1 >
Character table of C7⋊D4
class | 1 | 2A | 2B | 2C | 4 | 7A | 7B | 7C | 14A | 14B | 14C | 14D | 14E | 14F | 14G | 14H | 14I | |
size | 1 | 1 | 2 | 14 | 14 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | orthogonal lifted from D4 |
ρ6 | 2 | 2 | 2 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | orthogonal lifted from D7 |
ρ7 | 2 | 2 | 2 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | orthogonal lifted from D7 |
ρ8 | 2 | 2 | 2 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | orthogonal lifted from D7 |
ρ9 | 2 | 2 | -2 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ75-ζ72 | -ζ76-ζ7 | -ζ74-ζ73 | ζ76+ζ7 | ζ75+ζ72 | orthogonal lifted from D14 |
ρ10 | 2 | 2 | -2 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ76-ζ7 | -ζ74-ζ73 | -ζ75-ζ72 | ζ74+ζ73 | ζ76+ζ7 | orthogonal lifted from D14 |
ρ11 | 2 | 2 | -2 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ74-ζ73 | -ζ75-ζ72 | -ζ76-ζ7 | ζ75+ζ72 | ζ74+ζ73 | orthogonal lifted from D14 |
ρ12 | 2 | -2 | 0 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | -ζ76-ζ7 | -ζ76+ζ7 | -ζ75+ζ72 | -ζ74+ζ73 | ζ74-ζ73 | ζ75-ζ72 | ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | complex faithful |
ρ13 | 2 | -2 | 0 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | -ζ75-ζ72 | ζ75-ζ72 | -ζ74+ζ73 | -ζ76+ζ7 | ζ76-ζ7 | ζ74-ζ73 | -ζ75+ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | complex faithful |
ρ14 | 2 | -2 | 0 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | -ζ74-ζ73 | ζ74-ζ73 | -ζ76+ζ7 | ζ75-ζ72 | -ζ75+ζ72 | ζ76-ζ7 | -ζ74+ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | complex faithful |
ρ15 | 2 | -2 | 0 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | -ζ76-ζ7 | ζ76-ζ7 | ζ75-ζ72 | ζ74-ζ73 | -ζ74+ζ73 | -ζ75+ζ72 | -ζ76+ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | complex faithful |
ρ16 | 2 | -2 | 0 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | -ζ75-ζ72 | -ζ75+ζ72 | ζ74-ζ73 | ζ76-ζ7 | -ζ76+ζ7 | -ζ74+ζ73 | ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | complex faithful |
ρ17 | 2 | -2 | 0 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | -ζ74-ζ73 | -ζ74+ζ73 | ζ76-ζ7 | -ζ75+ζ72 | ζ75-ζ72 | -ζ76+ζ7 | ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | complex faithful |
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(1 22 13 15)(2 28 14 21)(3 27 8 20)(4 26 9 19)(5 25 10 18)(6 24 11 17)(7 23 12 16)
(1 15)(2 21)(3 20)(4 19)(5 18)(6 17)(7 16)(8 27)(9 26)(10 25)(11 24)(12 23)(13 22)(14 28)
G:=sub<Sym(28)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,22,13,15)(2,28,14,21)(3,27,8,20)(4,26,9,19)(5,25,10,18)(6,24,11,17)(7,23,12,16), (1,15)(2,21)(3,20)(4,19)(5,18)(6,17)(7,16)(8,27)(9,26)(10,25)(11,24)(12,23)(13,22)(14,28)>;
G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,22,13,15)(2,28,14,21)(3,27,8,20)(4,26,9,19)(5,25,10,18)(6,24,11,17)(7,23,12,16), (1,15)(2,21)(3,20)(4,19)(5,18)(6,17)(7,16)(8,27)(9,26)(10,25)(11,24)(12,23)(13,22)(14,28) );
G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(1,22,13,15),(2,28,14,21),(3,27,8,20),(4,26,9,19),(5,25,10,18),(6,24,11,17),(7,23,12,16)], [(1,15),(2,21),(3,20),(4,19),(5,18),(6,17),(7,16),(8,27),(9,26),(10,25),(11,24),(12,23),(13,22),(14,28)]])
G:=TransitiveGroup(28,6);
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)
(1 20 13 27)(2 19 14 26)(3 18 8 25)(4 17 9 24)(5 16 10 23)(6 15 11 22)(7 21 12 28)
(2 7)(3 6)(4 5)(8 11)(9 10)(12 14)(15 25)(16 24)(17 23)(18 22)(19 28)(20 27)(21 26)
G:=sub<Sym(28)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,20,13,27)(2,19,14,26)(3,18,8,25)(4,17,9,24)(5,16,10,23)(6,15,11,22)(7,21,12,28), (2,7)(3,6)(4,5)(8,11)(9,10)(12,14)(15,25)(16,24)(17,23)(18,22)(19,28)(20,27)(21,26)>;
G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28), (1,20,13,27)(2,19,14,26)(3,18,8,25)(4,17,9,24)(5,16,10,23)(6,15,11,22)(7,21,12,28), (2,7)(3,6)(4,5)(8,11)(9,10)(12,14)(15,25)(16,24)(17,23)(18,22)(19,28)(20,27)(21,26) );
G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28)], [(1,20,13,27),(2,19,14,26),(3,18,8,25),(4,17,9,24),(5,16,10,23),(6,15,11,22),(7,21,12,28)], [(2,7),(3,6),(4,5),(8,11),(9,10),(12,14),(15,25),(16,24),(17,23),(18,22),(19,28),(20,27),(21,26)]])
G:=TransitiveGroup(28,7);
C7⋊D4 is a maximal subgroup of
C4○D28 D4×D7 D4⋊2D7 Dic7⋊C6 C21⋊D4 C7⋊D12 C21⋊7D4 C7⋊S4 C35⋊D4 C7⋊D20 C35⋊7D4 C49⋊D4 C72⋊2D4 C7⋊D28 C72⋊7D4
C7⋊D4 is a maximal quotient of
Dic7⋊C4 D14⋊C4 D4⋊D7 D4.D7 Q8⋊D7 C7⋊Q16 C23.D7 C21⋊D4 C7⋊D12 C21⋊7D4 C35⋊D4 C7⋊D20 C35⋊7D4 C49⋊D4 C72⋊2D4 C7⋊D28 C72⋊7D4
Matrix representation of C7⋊D4 ►in GL2(𝔽29) generated by
7 | 1 |
28 | 0 |
9 | 19 |
14 | 20 |
1 | 7 |
0 | 28 |
G:=sub<GL(2,GF(29))| [7,28,1,0],[9,14,19,20],[1,0,7,28] >;
C7⋊D4 in GAP, Magma, Sage, TeX
C_7\rtimes D_4
% in TeX
G:=Group("C7:D4");
// GroupNames label
G:=SmallGroup(56,7);
// by ID
G=gap.SmallGroup(56,7);
# by ID
G:=PCGroup([4,-2,-2,-2,-7,49,771]);
// Polycyclic
G:=Group<a,b,c|a^7=b^4=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations
Export
Subgroup lattice of C7⋊D4 in TeX
Character table of C7⋊D4 in TeX