metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: C4.Dic7, C28.1C4, C7⋊2M4(2), C4.15D14, C22.Dic7, C28.15C22, C7⋊C8⋊5C2, (C2×C4).2D7, C14.7(C2×C4), (C2×C28).5C2, (C2×C14).3C4, C2.3(C2×Dic7), SmallGroup(112,9)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C7 — C14 — C28 — C7⋊C8 — C4.Dic7 |
Generators and relations for C4.Dic7
G = < a,b,c | a4=1, b14=a2, c2=a2b7, ab=ba, cac-1=a-1, cbc-1=b13 >
(1 22 15 8)(2 23 16 9)(3 24 17 10)(4 25 18 11)(5 26 19 12)(6 27 20 13)(7 28 21 14)(29 36 43 50)(30 37 44 51)(31 38 45 52)(32 39 46 53)(33 40 47 54)(34 41 48 55)(35 42 49 56)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)
(1 43 22 36 15 29 8 50)(2 56 23 49 16 42 9 35)(3 41 24 34 17 55 10 48)(4 54 25 47 18 40 11 33)(5 39 26 32 19 53 12 46)(6 52 27 45 20 38 13 31)(7 37 28 30 21 51 14 44)
G:=sub<Sym(56)| (1,22,15,8)(2,23,16,9)(3,24,17,10)(4,25,18,11)(5,26,19,12)(6,27,20,13)(7,28,21,14)(29,36,43,50)(30,37,44,51)(31,38,45,52)(32,39,46,53)(33,40,47,54)(34,41,48,55)(35,42,49,56), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,43,22,36,15,29,8,50)(2,56,23,49,16,42,9,35)(3,41,24,34,17,55,10,48)(4,54,25,47,18,40,11,33)(5,39,26,32,19,53,12,46)(6,52,27,45,20,38,13,31)(7,37,28,30,21,51,14,44)>;
G:=Group( (1,22,15,8)(2,23,16,9)(3,24,17,10)(4,25,18,11)(5,26,19,12)(6,27,20,13)(7,28,21,14)(29,36,43,50)(30,37,44,51)(31,38,45,52)(32,39,46,53)(33,40,47,54)(34,41,48,55)(35,42,49,56), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,43,22,36,15,29,8,50)(2,56,23,49,16,42,9,35)(3,41,24,34,17,55,10,48)(4,54,25,47,18,40,11,33)(5,39,26,32,19,53,12,46)(6,52,27,45,20,38,13,31)(7,37,28,30,21,51,14,44) );
G=PermutationGroup([[(1,22,15,8),(2,23,16,9),(3,24,17,10),(4,25,18,11),(5,26,19,12),(6,27,20,13),(7,28,21,14),(29,36,43,50),(30,37,44,51),(31,38,45,52),(32,39,46,53),(33,40,47,54),(34,41,48,55),(35,42,49,56)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)], [(1,43,22,36,15,29,8,50),(2,56,23,49,16,42,9,35),(3,41,24,34,17,55,10,48),(4,54,25,47,18,40,11,33),(5,39,26,32,19,53,12,46),(6,52,27,45,20,38,13,31),(7,37,28,30,21,51,14,44)]])
C4.Dic7 is a maximal subgroup of
Dic14⋊C4 C56.C4 C28.53D4 C28.46D4 C4.12D28 C28.D4 C28.10D4 D4⋊2Dic7 D28.2C4 D7×M4(2) D4.D14 C28.C23 Q8.Dic7 D4⋊D14 D4.9D14 C28.C12 D6.Dic7 C84.C4
C4.Dic7 is a maximal quotient of
C42.D7 C28⋊C8 C28.55D4 D6.Dic7 C84.C4
34 conjugacy classes
class | 1 | 2A | 2B | 4A | 4B | 4C | 7A | 7B | 7C | 8A | 8B | 8C | 8D | 14A | ··· | 14I | 28A | ··· | 28L |
order | 1 | 2 | 2 | 4 | 4 | 4 | 7 | 7 | 7 | 8 | 8 | 8 | 8 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 14 | 14 | 14 | 14 | 2 | ··· | 2 | 2 | ··· | 2 |
34 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | - | + | - | ||||
image | C1 | C2 | C2 | C4 | C4 | D7 | M4(2) | Dic7 | D14 | Dic7 | C4.Dic7 |
kernel | C4.Dic7 | C7⋊C8 | C2×C28 | C28 | C2×C14 | C2×C4 | C7 | C4 | C4 | C22 | C1 |
# reps | 1 | 2 | 1 | 2 | 2 | 3 | 2 | 3 | 3 | 3 | 12 |
Matrix representation of C4.Dic7 ►in GL2(𝔽29) generated by
17 | 0 |
0 | 12 |
26 | 0 |
0 | 10 |
0 | 12 |
1 | 0 |
G:=sub<GL(2,GF(29))| [17,0,0,12],[26,0,0,10],[0,1,12,0] >;
C4.Dic7 in GAP, Magma, Sage, TeX
C_4.{\rm Dic}_7
% in TeX
G:=Group("C4.Dic7");
// GroupNames label
G:=SmallGroup(112,9);
// by ID
G=gap.SmallGroup(112,9);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-7,20,101,42,2404]);
// Polycyclic
G:=Group<a,b,c|a^4=1,b^14=a^2,c^2=a^2*b^7,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=b^13>;
// generators/relations
Export