Copied to
clipboard

G = C9⋊A4order 108 = 22·33

The semidirect product of C9 and A4 acting via A4/C22=C3

metabelian, soluble, monomial

Aliases: C9⋊A4, C2213- 1+2, (C3×A4).C3, (C2×C18)⋊2C3, C3.A41C3, C3.3(C3×A4), (C2×C6).2C32, SmallGroup(108,19)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C9⋊A4
C1C22C2×C6C3×A4 — C9⋊A4
C22C2×C6 — C9⋊A4
C1C3C9

Generators and relations for C9⋊A4
 G = < a,b,c,d | a9=b2=c2=d3=1, ab=ba, ac=ca, dad-1=a7, dbd-1=bc=cb, dcd-1=b >

3C2
12C3
3C6
4C32
4C9
4C9
3A4
3C18
43- 1+2

Character table of C9⋊A4

 class 123A3B3C3D6A6B9A9B9C9D9E9F18A18B18C18D18E18F
 size 13111212333312121212333333
ρ111111111111111111111    trivial
ρ211111111ζ32ζ3ζ32ζ3ζ32ζ3ζ3ζ32ζ32ζ3ζ32ζ3    linear of order 3
ρ31111ζ3ζ321111ζ3ζ32ζ32ζ3111111    linear of order 3
ρ41111ζ32ζ31111ζ32ζ3ζ3ζ32111111    linear of order 3
ρ51111ζ32ζ311ζ32ζ3ζ3ζ3211ζ3ζ32ζ32ζ3ζ32ζ3    linear of order 3
ρ61111ζ3ζ3211ζ3ζ32ζ32ζ311ζ32ζ3ζ3ζ32ζ3ζ32    linear of order 3
ρ71111ζ3ζ3211ζ32ζ311ζ3ζ32ζ3ζ32ζ32ζ3ζ32ζ3    linear of order 3
ρ811111111ζ3ζ32ζ3ζ32ζ3ζ32ζ32ζ3ζ3ζ32ζ3ζ32    linear of order 3
ρ91111ζ32ζ311ζ3ζ3211ζ32ζ3ζ32ζ3ζ3ζ32ζ3ζ32    linear of order 3
ρ103-13300-1-1330000-1-1-1-1-1-1    orthogonal lifted from A4
ρ1133-3-3-3/2-3+3-3/200-3-3-3/2-3+3-3/2000000000000    complex lifted from 3- 1+2
ρ1233-3+3-3/2-3-3-3/200-3+3-3/2-3-3-3/2000000000000    complex lifted from 3- 1+2
ρ133-13300-1-1-3+3-3/2-3-3-3/20000ζ6ζ65ζ65ζ6ζ65ζ6    complex lifted from C3×A4
ρ143-13300-1-1-3-3-3/2-3+3-3/20000ζ65ζ6ζ6ζ65ζ6ζ65    complex lifted from C3×A4
ρ153-1-3-3-3/2-3+3-3/200ζ6ζ6500000098997929495    complex faithful
ρ163-1-3-3-3/2-3+3-3/200ζ6ζ6500000095949989792    complex faithful
ρ173-1-3+3-3/2-3-3-3/200ζ65ζ600000094959899297    complex faithful
ρ183-1-3+3-3/2-3-3-3/200ζ65ζ600000097929594989    complex faithful
ρ193-1-3-3-3/2-3+3-3/200ζ6ζ6500000092979495998    complex faithful
ρ203-1-3+3-3/2-3-3-3/200ζ65ζ600000099892979594    complex faithful

Smallest permutation representation of C9⋊A4
On 36 points
Generators in S36
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)
(1 15)(2 16)(3 17)(4 18)(5 10)(6 11)(7 12)(8 13)(9 14)(19 35)(20 36)(21 28)(22 29)(23 30)(24 31)(25 32)(26 33)(27 34)
(1 25)(2 26)(3 27)(4 19)(5 20)(6 21)(7 22)(8 23)(9 24)(10 36)(11 28)(12 29)(13 30)(14 31)(15 32)(16 33)(17 34)(18 35)
(2 5 8)(3 9 6)(10 23 33)(11 27 31)(12 22 29)(13 26 36)(14 21 34)(15 25 32)(16 20 30)(17 24 28)(18 19 35)

G:=sub<Sym(36)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,15)(2,16)(3,17)(4,18)(5,10)(6,11)(7,12)(8,13)(9,14)(19,35)(20,36)(21,28)(22,29)(23,30)(24,31)(25,32)(26,33)(27,34), (1,25)(2,26)(3,27)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,36)(11,28)(12,29)(13,30)(14,31)(15,32)(16,33)(17,34)(18,35), (2,5,8)(3,9,6)(10,23,33)(11,27,31)(12,22,29)(13,26,36)(14,21,34)(15,25,32)(16,20,30)(17,24,28)(18,19,35)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (1,15)(2,16)(3,17)(4,18)(5,10)(6,11)(7,12)(8,13)(9,14)(19,35)(20,36)(21,28)(22,29)(23,30)(24,31)(25,32)(26,33)(27,34), (1,25)(2,26)(3,27)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,36)(11,28)(12,29)(13,30)(14,31)(15,32)(16,33)(17,34)(18,35), (2,5,8)(3,9,6)(10,23,33)(11,27,31)(12,22,29)(13,26,36)(14,21,34)(15,25,32)(16,20,30)(17,24,28)(18,19,35) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)], [(1,15),(2,16),(3,17),(4,18),(5,10),(6,11),(7,12),(8,13),(9,14),(19,35),(20,36),(21,28),(22,29),(23,30),(24,31),(25,32),(26,33),(27,34)], [(1,25),(2,26),(3,27),(4,19),(5,20),(6,21),(7,22),(8,23),(9,24),(10,36),(11,28),(12,29),(13,30),(14,31),(15,32),(16,33),(17,34),(18,35)], [(2,5,8),(3,9,6),(10,23,33),(11,27,31),(12,22,29),(13,26,36),(14,21,34),(15,25,32),(16,20,30),(17,24,28),(18,19,35)]])

C9⋊A4 is a maximal subgroup of
D9⋊A4  C62.25C32  A4×3- 1+2  C62.9C32  C42⋊3- 1+2  C24⋊3- 1+2  C2423- 1+2  C2443- 1+2
C9⋊A4 is a maximal quotient of
C18.A4  C62.11C32  C62.12C32  C62.16C32  C42⋊3- 1+2  C24⋊3- 1+2  C2423- 1+2  C2443- 1+2

Matrix representation of C9⋊A4 in GL3(𝔽19) generated by

11410
1319
6157
,
001
181818
100
,
010
100
181818
,
100
001
181818
G:=sub<GL(3,GF(19))| [11,13,6,4,1,15,10,9,7],[0,18,1,0,18,0,1,18,0],[0,1,18,1,0,18,0,0,18],[1,0,18,0,0,18,0,1,18] >;

C9⋊A4 in GAP, Magma, Sage, TeX

C_9\rtimes A_4
% in TeX

G:=Group("C9:A4");
// GroupNames label

G:=SmallGroup(108,19);
// by ID

G=gap.SmallGroup(108,19);
# by ID

G:=PCGroup([5,-3,-3,-3,-2,2,121,36,1083,2029]);
// Polycyclic

G:=Group<a,b,c,d|a^9=b^2=c^2=d^3=1,a*b=b*a,a*c=c*a,d*a*d^-1=a^7,d*b*d^-1=b*c=c*b,d*c*d^-1=b>;
// generators/relations

Export

Subgroup lattice of C9⋊A4 in TeX
Character table of C9⋊A4 in TeX

׿
×
𝔽