Copied to
clipboard

G = D4.10D14order 224 = 25·7

The non-split extension by D4 of D14 acting through Inn(D4)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.10D14, Q8.11D14, C722- 1+4, C14.13C24, C28.27C23, D14.8C23, D28.14C22, Dic7.8C23, Dic14.14C22, C4○D44D7, (Q8×D7)⋊5C2, C4○D289C2, C7⋊D4.C22, D42D75C2, (C2×C4).25D14, (C2×C14).5C23, (C4×D7).6C22, C2.14(C23×D7), C4.34(C22×D7), (C2×Dic14)⋊14C2, (C2×C28).49C22, (C7×D4).10C22, (C7×Q8).11C22, C22.4(C22×D7), (C2×Dic7).22C22, (C7×C4○D4)⋊5C2, SmallGroup(224,186)

Series: Derived Chief Lower central Upper central

C1C14 — D4.10D14
C1C7C14D14C4×D7Q8×D7 — D4.10D14
C7C14 — D4.10D14
C1C2C4○D4

Generators and relations for D4.10D14
 G = < a,b,c,d | a4=b2=1, c14=d2=a2, bab=cac-1=dad-1=a-1, cbc-1=a2b, bd=db, dcd-1=c13 >

Subgroups: 486 in 146 conjugacy classes, 85 normal (12 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C7, C2×C4, C2×C4, D4, D4, Q8, Q8, D7, C14, C14, C2×Q8, C4○D4, C4○D4, Dic7, C28, C28, D14, C2×C14, 2- 1+4, Dic14, C4×D7, D28, C2×Dic7, C7⋊D4, C2×C28, C7×D4, C7×Q8, C2×Dic14, C4○D28, D42D7, Q8×D7, C7×C4○D4, D4.10D14
Quotients: C1, C2, C22, C23, D7, C24, D14, 2- 1+4, C22×D7, C23×D7, D4.10D14

Smallest permutation representation of D4.10D14
On 112 points
Generators in S112
(1 89 15 103)(2 104 16 90)(3 91 17 105)(4 106 18 92)(5 93 19 107)(6 108 20 94)(7 95 21 109)(8 110 22 96)(9 97 23 111)(10 112 24 98)(11 99 25 85)(12 86 26 100)(13 101 27 87)(14 88 28 102)(29 81 43 67)(30 68 44 82)(31 83 45 69)(32 70 46 84)(33 57 47 71)(34 72 48 58)(35 59 49 73)(36 74 50 60)(37 61 51 75)(38 76 52 62)(39 63 53 77)(40 78 54 64)(41 65 55 79)(42 80 56 66)
(1 54)(2 41)(3 56)(4 43)(5 30)(6 45)(7 32)(8 47)(9 34)(10 49)(11 36)(12 51)(13 38)(14 53)(15 40)(16 55)(17 42)(18 29)(19 44)(20 31)(21 46)(22 33)(23 48)(24 35)(25 50)(26 37)(27 52)(28 39)(57 110)(58 97)(59 112)(60 99)(61 86)(62 101)(63 88)(64 103)(65 90)(66 105)(67 92)(68 107)(69 94)(70 109)(71 96)(72 111)(73 98)(74 85)(75 100)(76 87)(77 102)(78 89)(79 104)(80 91)(81 106)(82 93)(83 108)(84 95)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 70 15 84)(2 83 16 69)(3 68 17 82)(4 81 18 67)(5 66 19 80)(6 79 20 65)(7 64 21 78)(8 77 22 63)(9 62 23 76)(10 75 24 61)(11 60 25 74)(12 73 26 59)(13 58 27 72)(14 71 28 57)(29 92 43 106)(30 105 44 91)(31 90 45 104)(32 103 46 89)(33 88 47 102)(34 101 48 87)(35 86 49 100)(36 99 50 85)(37 112 51 98)(38 97 52 111)(39 110 53 96)(40 95 54 109)(41 108 55 94)(42 93 56 107)

G:=sub<Sym(112)| (1,89,15,103)(2,104,16,90)(3,91,17,105)(4,106,18,92)(5,93,19,107)(6,108,20,94)(7,95,21,109)(8,110,22,96)(9,97,23,111)(10,112,24,98)(11,99,25,85)(12,86,26,100)(13,101,27,87)(14,88,28,102)(29,81,43,67)(30,68,44,82)(31,83,45,69)(32,70,46,84)(33,57,47,71)(34,72,48,58)(35,59,49,73)(36,74,50,60)(37,61,51,75)(38,76,52,62)(39,63,53,77)(40,78,54,64)(41,65,55,79)(42,80,56,66), (1,54)(2,41)(3,56)(4,43)(5,30)(6,45)(7,32)(8,47)(9,34)(10,49)(11,36)(12,51)(13,38)(14,53)(15,40)(16,55)(17,42)(18,29)(19,44)(20,31)(21,46)(22,33)(23,48)(24,35)(25,50)(26,37)(27,52)(28,39)(57,110)(58,97)(59,112)(60,99)(61,86)(62,101)(63,88)(64,103)(65,90)(66,105)(67,92)(68,107)(69,94)(70,109)(71,96)(72,111)(73,98)(74,85)(75,100)(76,87)(77,102)(78,89)(79,104)(80,91)(81,106)(82,93)(83,108)(84,95), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,70,15,84)(2,83,16,69)(3,68,17,82)(4,81,18,67)(5,66,19,80)(6,79,20,65)(7,64,21,78)(8,77,22,63)(9,62,23,76)(10,75,24,61)(11,60,25,74)(12,73,26,59)(13,58,27,72)(14,71,28,57)(29,92,43,106)(30,105,44,91)(31,90,45,104)(32,103,46,89)(33,88,47,102)(34,101,48,87)(35,86,49,100)(36,99,50,85)(37,112,51,98)(38,97,52,111)(39,110,53,96)(40,95,54,109)(41,108,55,94)(42,93,56,107)>;

G:=Group( (1,89,15,103)(2,104,16,90)(3,91,17,105)(4,106,18,92)(5,93,19,107)(6,108,20,94)(7,95,21,109)(8,110,22,96)(9,97,23,111)(10,112,24,98)(11,99,25,85)(12,86,26,100)(13,101,27,87)(14,88,28,102)(29,81,43,67)(30,68,44,82)(31,83,45,69)(32,70,46,84)(33,57,47,71)(34,72,48,58)(35,59,49,73)(36,74,50,60)(37,61,51,75)(38,76,52,62)(39,63,53,77)(40,78,54,64)(41,65,55,79)(42,80,56,66), (1,54)(2,41)(3,56)(4,43)(5,30)(6,45)(7,32)(8,47)(9,34)(10,49)(11,36)(12,51)(13,38)(14,53)(15,40)(16,55)(17,42)(18,29)(19,44)(20,31)(21,46)(22,33)(23,48)(24,35)(25,50)(26,37)(27,52)(28,39)(57,110)(58,97)(59,112)(60,99)(61,86)(62,101)(63,88)(64,103)(65,90)(66,105)(67,92)(68,107)(69,94)(70,109)(71,96)(72,111)(73,98)(74,85)(75,100)(76,87)(77,102)(78,89)(79,104)(80,91)(81,106)(82,93)(83,108)(84,95), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,70,15,84)(2,83,16,69)(3,68,17,82)(4,81,18,67)(5,66,19,80)(6,79,20,65)(7,64,21,78)(8,77,22,63)(9,62,23,76)(10,75,24,61)(11,60,25,74)(12,73,26,59)(13,58,27,72)(14,71,28,57)(29,92,43,106)(30,105,44,91)(31,90,45,104)(32,103,46,89)(33,88,47,102)(34,101,48,87)(35,86,49,100)(36,99,50,85)(37,112,51,98)(38,97,52,111)(39,110,53,96)(40,95,54,109)(41,108,55,94)(42,93,56,107) );

G=PermutationGroup([[(1,89,15,103),(2,104,16,90),(3,91,17,105),(4,106,18,92),(5,93,19,107),(6,108,20,94),(7,95,21,109),(8,110,22,96),(9,97,23,111),(10,112,24,98),(11,99,25,85),(12,86,26,100),(13,101,27,87),(14,88,28,102),(29,81,43,67),(30,68,44,82),(31,83,45,69),(32,70,46,84),(33,57,47,71),(34,72,48,58),(35,59,49,73),(36,74,50,60),(37,61,51,75),(38,76,52,62),(39,63,53,77),(40,78,54,64),(41,65,55,79),(42,80,56,66)], [(1,54),(2,41),(3,56),(4,43),(5,30),(6,45),(7,32),(8,47),(9,34),(10,49),(11,36),(12,51),(13,38),(14,53),(15,40),(16,55),(17,42),(18,29),(19,44),(20,31),(21,46),(22,33),(23,48),(24,35),(25,50),(26,37),(27,52),(28,39),(57,110),(58,97),(59,112),(60,99),(61,86),(62,101),(63,88),(64,103),(65,90),(66,105),(67,92),(68,107),(69,94),(70,109),(71,96),(72,111),(73,98),(74,85),(75,100),(76,87),(77,102),(78,89),(79,104),(80,91),(81,106),(82,93),(83,108),(84,95)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,70,15,84),(2,83,16,69),(3,68,17,82),(4,81,18,67),(5,66,19,80),(6,79,20,65),(7,64,21,78),(8,77,22,63),(9,62,23,76),(10,75,24,61),(11,60,25,74),(12,73,26,59),(13,58,27,72),(14,71,28,57),(29,92,43,106),(30,105,44,91),(31,90,45,104),(32,103,46,89),(33,88,47,102),(34,101,48,87),(35,86,49,100),(36,99,50,85),(37,112,51,98),(38,97,52,111),(39,110,53,96),(40,95,54,109),(41,108,55,94),(42,93,56,107)]])

D4.10D14 is a maximal subgroup of
D4.9D28  D4.10D28  D28.38D4  D28.40D4  D4.11D28  D4.13D28  D811D14  D8.10D14  D86D14  D28.44D4  D28.33C23  D28.35C23  C14.C25  D14.C24  D7×2- 1+4
D4.10D14 is a maximal quotient of
C42.87D14  C42.89D14  C42.90D14  C42.91D14  C42.92D14  C42.94D14  C42.96D14  C42.98D14  C42.99D14  D4×Dic14  C42.105D14  C42.106D14  C42.108D14  D2824D4  Dic1423D4  D46D28  C42.115D14  C42.118D14  Dic1410Q8  Q86Dic14  C42.125D14  Q8×D28  C42.134D14  C42.135D14  C14.682- 1+4  Dic1419D4  C14.352+ 1+4  C14.712- 1+4  C14.722- 1+4  C14.732- 1+4  C14.492+ 1+4  C14.752- 1+4  C14.152- 1+4  C14.162- 1+4  Dic1421D4  C14.772- 1+4  C14.572+ 1+4  C14.582+ 1+4  C14.792- 1+4  C14.802- 1+4  C14.602+ 1+4  C14.822- 1+4  C14.832- 1+4  C14.842- 1+4  C14.852- 1+4  C14.862- 1+4  C42.137D14  C42.139D14  C42.140D14  C42.141D14  Dic1410D4  C42.144D14  C42.145D14  Dic147Q8  C42.147D14  C42.148D14  C42.152D14  C42.154D14  C42.155D14  C42.157D14  C42.159D14  C42.160D14  C42.161D14  C42.162D14  C42.164D14  C42.165D14  C14.1042- 1+4  C14.1052- 1+4  C14.1062- 1+4  C14.1072- 1+4  C14.1082- 1+4

47 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E···4J7A7B7C14A14B14C14D···14L28A···28F28G···28O
order122222244444···477714141414···1428···2828···28
size112221414222214···142222224···42···24···4

47 irreducible representations

dim111111222244
type++++++++++--
imageC1C2C2C2C2C2D7D14D14D142- 1+4D4.10D14
kernelD4.10D14C2×Dic14C4○D28D42D7Q8×D7C7×C4○D4C4○D4C2×C4D4Q8C7C1
# reps133621399316

Matrix representation of D4.10D14 in GL4(𝔽29) generated by

602828
0623
248230
1321023
,
419281
2125024
8191510
0191914
,
118193
18077
752621
1116821
,
16181811
1013260
0201827
1320211
G:=sub<GL(4,GF(29))| [6,0,24,13,0,6,8,21,28,2,23,0,28,3,0,23],[4,21,8,0,19,25,19,19,28,0,15,19,1,24,10,14],[11,18,7,11,8,0,5,16,19,7,26,8,3,7,21,21],[16,10,0,13,18,13,20,20,18,26,18,2,11,0,27,11] >;

D4.10D14 in GAP, Magma, Sage, TeX

D_4._{10}D_{14}
% in TeX

G:=Group("D4.10D14");
// GroupNames label

G:=SmallGroup(224,186);
// by ID

G=gap.SmallGroup(224,186);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,103,188,86,579,69,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=1,c^14=d^2=a^2,b*a*b=c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=a^2*b,b*d=d*b,d*c*d^-1=c^13>;
// generators/relations

׿
×
𝔽