Extensions 1→N→G→Q→1 with N=C2×Q8 and Q=C2

Direct product G=N×Q with N=C2×Q8 and Q=C2
dρLabelID
C22×Q832C2^2xQ832,47

Semidirect products G=N:Q with N=C2×Q8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Q8)⋊1C2 = C22⋊Q8φ: C2/C1C2 ⊆ Out C2×Q816(C2xQ8):1C232,29
(C2×Q8)⋊2C2 = C4.4D4φ: C2/C1C2 ⊆ Out C2×Q816(C2xQ8):2C232,31
(C2×Q8)⋊3C2 = C2×SD16φ: C2/C1C2 ⊆ Out C2×Q816(C2xQ8):3C232,40
(C2×Q8)⋊4C2 = C8.C22φ: C2/C1C2 ⊆ Out C2×Q8164-(C2xQ8):4C232,44
(C2×Q8)⋊5C2 = 2- 1+4φ: C2/C1C2 ⊆ Out C2×Q8164-(C2xQ8):5C232,50
(C2×Q8)⋊6C2 = C2×C4○D4φ: trivial image16(C2xQ8):6C232,48

Non-split extensions G=N.Q with N=C2×Q8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Q8).1C2 = C4.10D4φ: C2/C1C2 ⊆ Out C2×Q8164-(C2xQ8).1C232,8
(C2×Q8).2C2 = Q8⋊C4φ: C2/C1C2 ⊆ Out C2×Q832(C2xQ8).2C232,10
(C2×Q8).3C2 = C4⋊Q8φ: C2/C1C2 ⊆ Out C2×Q832(C2xQ8).3C232,35
(C2×Q8).4C2 = C2×Q16φ: C2/C1C2 ⊆ Out C2×Q832(C2xQ8).4C232,41
(C2×Q8).5C2 = C4×Q8φ: trivial image32(C2xQ8).5C232,26

׿
×
𝔽