p-group, metabelian, nilpotent (class 3), monomial
Aliases: D4○SD16, Q8○SD16, D4.12D4, D8⋊5C22, C8.4C23, C4.9C24, Q8.12D4, Q16⋊5C22, D4.6C23, Q8.6C23, SD16⋊6C22, M4(2)⋊7C22, 2- 1+4⋊2C2, 2+ 1+4⋊4C2, C8○D4⋊4C2, C4○D8⋊5C2, C8⋊C22⋊5C2, (C2×C8)⋊5C22, C4.42(C2×D4), (C2×SD16)⋊6C2, C4○D4⋊2C22, C8.C22⋊4C2, (C2×Q8)⋊7C22, C22.6(C2×D4), (C2×C4).44C23, C2.31(C22×D4), (C2×D4).41C22, SmallGroup(64,258)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for D4○SD16
G = < a,b,c,d | a4=b2=d2=1, c4=a2, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c3 >
Subgroups: 205 in 129 conjugacy classes, 79 normal (13 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, D4, D4, Q8, Q8, Q8, C23, C2×C8, M4(2), D8, SD16, SD16, Q16, C2×D4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, C4○D4, C8○D4, C2×SD16, C4○D8, C8⋊C22, C8.C22, 2+ 1+4, 2- 1+4, D4○SD16
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22×D4, D4○SD16
Character table of D4○SD16
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | 8B | 8C | 8D | 8E | |
size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ10 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ11 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ12 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ13 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ14 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ15 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ16 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ17 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√-2 | 2√-2 | 0 | 0 | 0 | complex faithful |
ρ22 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√-2 | -2√-2 | 0 | 0 | 0 | complex faithful |
(1 7 5 3)(2 8 6 4)(9 11 13 15)(10 12 14 16)
(1 12)(2 13)(3 14)(4 15)(5 16)(6 9)(7 10)(8 11)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 14)(2 9)(3 12)(4 15)(5 10)(6 13)(7 16)(8 11)
G:=sub<Sym(16)| (1,7,5,3)(2,8,6,4)(9,11,13,15)(10,12,14,16), (1,12)(2,13)(3,14)(4,15)(5,16)(6,9)(7,10)(8,11), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,14)(2,9)(3,12)(4,15)(5,10)(6,13)(7,16)(8,11)>;
G:=Group( (1,7,5,3)(2,8,6,4)(9,11,13,15)(10,12,14,16), (1,12)(2,13)(3,14)(4,15)(5,16)(6,9)(7,10)(8,11), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,14)(2,9)(3,12)(4,15)(5,10)(6,13)(7,16)(8,11) );
G=PermutationGroup([[(1,7,5,3),(2,8,6,4),(9,11,13,15),(10,12,14,16)], [(1,12),(2,13),(3,14),(4,15),(5,16),(6,9),(7,10),(8,11)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,14),(2,9),(3,12),(4,15),(5,10),(6,13),(7,16),(8,11)]])
G:=TransitiveGroup(16,116);
D4○SD16 is a maximal subgroup of
D8⋊C23 SD16.A4 Q8.6S4 D4.4S4
D8⋊D2p: D8⋊11D4 D8⋊6D4 D8⋊11D6 D8⋊6D6 D8⋊11D10 D8⋊6D10 D8⋊11D14 D8⋊6D14 ...
D4p.D4: D8.13D4 D8○SD16 SD16⋊13D6 C24.C23 D20.29D4 C40.C23 D28.29D4 C56.C23 ...
D4p.C23: C8.C24 C4.C25 D4.11D12 D12.33C23 D12.34C23 D4.11D20 D20.33C23 D20.34C23 ...
D4○SD16 is a maximal quotient of
C42.275C23 C42.276C23 C42.278C23 C42.281C23 C42.16C23 C42.19C23 C42.20C23 C42.21C23 C42.23C23 C42.352C23 C42.353C23 C42.354C23 C42.355C23 C42.357C23 C42.359C23 C42.360C23 C42.366C23 C42.367C23 M4(2)⋊3Q8 C42.385C23 C42.390C23 C42.411C23 C42.423C23 C42.424C23 C42.426C23 C42.25C23 C42.27C23 C42.30C23 Q8⋊4D8 C42.501C23 Q8⋊5Q16 C42.506C23 C42.509C23 C42.510C23 C42.512C23 C42.513C23 C42.514C23 C42.517C23 Q8×SD16 SD16⋊4Q8 D8⋊4Q8 Q16⋊4Q8 SD16⋊3Q8 C42.75C23 C42.531C23
D8⋊D2p: D8⋊10D4 D8⋊4D4 D8⋊11D6 D8⋊6D6 D8⋊11D10 D8⋊6D10 D8⋊11D14 D8⋊6D14 ...
Q16⋊D2p: Q16⋊10D4 Q16⋊5D4 C24.C23 C40.C23 C56.C23 ...
SD16⋊D2p: SD16⋊D4 SD16⋊6D4 SD16⋊2D4 SD16⋊10D4 SD16⋊11D4 SD16⋊13D6 D20.29D4 D28.29D4 ...
C8⋊pD4⋊C2: (C2×C8)⋊13D4 M4(2)⋊16D4 M4(2)⋊10D4 C42.386C23 C42.391C23 C4.2+ 1+4 C4.192+ 1+4 C42.407C23 ...
M4(2)⋊D2p: M4(2)⋊17D4 D4.11D12 D4.11D20 D4.11D28 ...
C4○D4⋊D2p: (C2×Q8)⋊16D4 (C2×D4)⋊21D4 (C2×Q8)⋊17D4 C42.18C23 D12.34C23 D20.34C23 D28.34C23 ...
(Cp×D4).D4: 2+ 1+4⋊5C4 2- 1+4⋊4C4 C4○D4.7Q8 D4.(C2×D4) C42.15C23 (C2×C8)⋊11D4 (C2×D4).301D4 (C2×D4).302D4 ...
Matrix representation of D4○SD16 ►in GL4(𝔽3) generated by
0 | 0 | 0 | 2 |
0 | 0 | 1 | 0 |
0 | 2 | 0 | 0 |
1 | 0 | 0 | 0 |
2 | 0 | 0 | 0 |
0 | 2 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
1 | 1 | 0 | 0 |
0 | 0 | 1 | 2 |
0 | 0 | 2 | 0 |
2 | 2 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 1 | 2 |
G:=sub<GL(4,GF(3))| [0,0,0,1,0,0,2,0,0,1,0,0,2,0,0,0],[2,0,0,0,0,2,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,1,0,0,0,0,1,2,0,0,2,0],[2,0,0,0,2,1,0,0,0,0,1,1,0,0,0,2] >;
D4○SD16 in GAP, Magma, Sage, TeX
D_4\circ {\rm SD}_{16}
% in TeX
G:=Group("D4oSD16");
// GroupNames label
G:=SmallGroup(64,258);
// by ID
G=gap.SmallGroup(64,258);
# by ID
G:=PCGroup([6,-2,2,2,2,-2,-2,192,217,255,1444,730,88]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=d^2=1,c^4=a^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^3>;
// generators/relations
Export